The University of Warwick, School of Life Sciences, Coventry, UK.
The University of Manchester, Faculty of Life Science, Manchester, UK.
Sci Rep. 2016 Sep 19;6:33609. doi: 10.1038/srep33609.
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca(2+)-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca(2+)-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity.
最近的研究强调了星形胶质细胞分泌的分子(如 ATP)对中枢神经元突触传递的缓慢调节的重要性。然而,神经胶质递质对单个突触强度的影响的生物物理机制尚不清楚。在这里,我们表明嘌呤能 P2X 受体可以为单个突触末梢的信号传递做出重大贡献。星形胶质细胞释放的 ATP 通过 Ca2+依赖性机制促进 P2X 受体在兴奋性突触中的募集。与兴奋性突触中的 NMDA 受体共定位的 P2X 受体可以被来自突触前末端的与谷氨酸共释放的 ATP 和源自胶质细胞的 ATP 激活。P2X 受体的激活反过来又通过 Ca2+依赖性去磷酸化和与 PSD-95 多蛋白复合物相互作用,导致突触后 NMDA 受体的下调。PSD-95 或 P2X4 受体的基因缺失消除了 ATP 介导的 NMDA 受体下调。在 PSD-95 突变体中,嘌呤能调制 NMDA 受体的功能受损,极大地降低了 LTP 诱导的阈值,并增加了 LTP 的净幅度。我们的发现表明,胶质细胞和神经元衍生的 ATP 的协同作用可以预先调节兴奋性突触的效能,从而在胶质细胞-神经元通讯和大脑的元可塑性中发挥重要作用。