Chou Chau Yuan-Fong, Chou Chao Chung-Ting, Rao Jhin-Yu, Chiang Hai-Pang, Lim Chee Ming, Lim Ren Chong, Voo Nyuk Yoong
Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
Department of Physics, Fu Jen Catholic University, New Taipei City, Taiwan.
Nanoscale Res Lett. 2016 Dec;11(1):411. doi: 10.1186/s11671-016-1636-x. Epub 2016 Sep 20.
We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.
我们提出了一种设计方法,通过在金属纳米结构内部引入中空腔来调节等离子体蝴蝶结纳米天线(PBNAs)周期性阵列的近场强度和吸收光谱。数值方法采用有限元法,结果表明,设计的中空PBNAs能够在400-3000nm范围内调节光谱。模拟结果表明,中空数量是增强PBNAs热点区域腔等离子体共振的关键因素。设计工作主要集中在通过控制PBNAs中的填充介电介质、轮廓膜厚度和中空数量来改变工作波长和增强局部场。这些特性表明,所提出的中空PBNAs可能是多功能光电生物传感器中等离子体增强器和吸收器的潜在候选者。