Dunham-Snary Kimberly J, Wu Danchen, Sykes Edward A, Thakrar Amar, Parlow Leah R G, Mewburn Jeffrey D, Parlow Joel L, Archer Stephen L
Department of Medicine, Queen's University, Kingston, ON, Canada.
Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, ON, Canada.
Chest. 2017 Jan;151(1):181-192. doi: 10.1016/j.chest.2016.09.001. Epub 2016 Sep 16.
Hypoxic pulmonary vasoconstriction (HPV) is a homeostatic mechanism that is intrinsic to the pulmonary vasculature. Intrapulmonary arteries constrict in response to alveolar hypoxia, diverting blood to better-oxygenated lung segments, thereby optimizing ventilation/perfusion matching and systemic oxygen delivery. In response to alveolar hypoxia, a mitochondrial sensor dynamically changes reactive oxygen species and redox couples in pulmonary artery smooth muscle cells (PASMC). This inhibits potassium channels, depolarizes PASMC, activates voltage-gated calcium channels, and increases cytosolic calcium, causing vasoconstriction. Sustained hypoxia activates rho kinase, reinforcing vasoconstriction, and hypoxia-inducible factor (HIF)-1α, leading to adverse pulmonary vascular remodeling and pulmonary hypertension (PH). In the nonventilated fetal lung, HPV diverts blood to the systemic vasculature. After birth, HPV commonly occurs as a localized homeostatic response to focal pneumonia or atelectasis, which optimizes systemic Po without altering pulmonary artery pressure (PAP). In single-lung anesthesia, HPV reduces blood flow to the nonventilated lung, thereby facilitating thoracic surgery. At altitude, global hypoxia causes diffuse HPV, increases PAP, and initiates PH. Exaggerated or heterogeneous HPV contributes to high-altitude pulmonary edema. Conversely, impaired HPV, whether due to disease (eg, COPD, sepsis) or vasodilator drugs, promotes systemic hypoxemia. Genetic and epigenetic abnormalities of this oxygen-sensing pathway can trigger normoxic activation of HIF-1α and can promote abnormal metabolism and cell proliferation. The resulting pseudohypoxic state underlies the Warburg metabolic shift and contributes to the neoplasia-like phenotype of PH. HPV and oxygen sensing are important in human health and disease.
低氧性肺血管收缩(HPV)是肺血管系统固有的一种稳态机制。肺内动脉会对肺泡低氧作出收缩反应,将血液分流至氧合较好的肺段,从而优化通气/血流匹配及全身氧输送。作为对肺泡低氧的反应,一种线粒体传感器会动态改变肺动脉平滑肌细胞(PASMC)中的活性氧和氧化还原对。这会抑制钾通道,使PASMC去极化,激活电压门控钙通道,并增加细胞溶质钙,从而导致血管收缩。持续性低氧会激活 Rho 激酶以加强血管收缩,并激活缺氧诱导因子(HIF)-1α,导致不良的肺血管重塑和肺动脉高压(PH)。在未通气的胎儿肺中,HPV会将血液分流至体循环血管。出生后,HPV通常作为对局灶性肺炎或肺不张的局部稳态反应而出现,可在不改变肺动脉压(PAP)的情况下优化全身氧分压。在单肺麻醉中,HPV会减少流向未通气肺的血流,从而便于进行胸外科手术。在高原地区,全身性低氧会导致弥漫性HPV,增加PAP,并引发PH。过度或异质性的HPV会导致高原肺水肿。相反,HPV受损,无论是由于疾病(如慢性阻塞性肺疾病、脓毒症)还是血管扩张药物,都会导致全身性低氧血症。这种氧感应途径的遗传和表观遗传异常可触发HIF-1α的常氧激活,并可促进异常代谢和细胞增殖。由此产生的假低氧状态是沃伯格代谢转变的基础,并促成了PH的肿瘤样表型。HPV和氧感应在人类健康和疾病中都很重要。