RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
Sci Rep. 2016 Sep 20;6:33632. doi: 10.1038/srep33632.
The food-poisoning bacterium Clostridium perfringens produces an enterotoxin (~35 kDa) that specifically targets human claudin-4, among the 26 human claudin proteins, and causes diarrhea by fluid accumulation in the intestinal cavity. The C-terminal domain of the Clostridium perfringens enterotoxin (C-CPE, ~15 kDa) binds tightly to claudin-4, and disrupts the intestinal tight junction barriers. In this study, we determined the 3.5-Å resolution crystal structure of the cell-free synthesized human claudin-4•C-CPE complex, which is significantly different from the structure of the off-target complex of an engineered C-CPE with mouse claudin-19. The claudin-4•C-CPE complex structure demonstrated the mechanism underlying claudin assembly disruption. A comparison of the present C-CPE-bound structure of claudin-4 with the enterotoxin-free claudin-15 structure revealed sophisticated C-CPE-induced conformation changes of the extracellular segments, induced on the foundation of the rigid four-transmembrane-helix bundle structure. These conformation changes provide a mechanistic model for the disruption of the lateral assembly of claudin molecules. Furthermore, the present novel structural mechanism for selecting a specific member of the claudin family can be used as the foundation to develop novel medically important technologies to selectively regulate the tight junctions formed by claudin family members in different organs.
产肠毒素梭菌产生一种肠毒素(35 kDa),该毒素专门针对 26 个人类紧密连接蛋白中的 Claudin-4,导致肠腔积液引起腹泻。产肠毒素梭菌肠毒素的 C 端结构域(C-CPE,15 kDa)与 Claudin-4 紧密结合,并破坏肠道紧密连接屏障。在这项研究中,我们确定了无细胞合成的人 Claudin-4•C-CPE 复合物的 3.5-Å 分辨率晶体结构,与工程化 C-CPE 与小鼠 Claudin-19 的非靶标复合物的结构有显著差异。 Claudin-4•C-CPE 复合物的结构揭示了 Claudin 组装破坏的机制。将目前 C-CPE 结合的 Claudin-4 结构与无肠毒素的 Claudin-15 结构进行比较,揭示了 Claudin-4 胞外段在刚性四跨膜螺旋束结构基础上发生的复杂 C-CPE 诱导构象变化。这些构象变化为 Claudin 分子侧向组装的破坏提供了一种机制模型。此外,目前针对 Claudin 家族特定成员的新型结构机制可作为基础,开发新型医学上重要的技术,以选择性调节不同器官中 Claudin 家族成员形成的紧密连接。