Ogbu Chinemerem P, Goldbach Nicolas Manuel, Pacesa Martin, Kapoor Srajan, Correia Bruno E, Vecchio Alex J
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Protein Sci. 2025 Oct;34(10):e70281. doi: 10.1002/pro.70281.
Clostridium perfringens enterotoxin (CpE) causes cytotoxic gastrointestinal disease in mammalian epithelium by binding membrane protein receptors called claudins. Claudins direct the formation of cell/cell tight junctions through oligomerization and govern the transport of molecules between individual cells. CpE binds claudins through its C-terminal domain (cCpE) and induces cytotoxicity through its N-terminal domain. The non-toxic cCpE is a useful tool to study claudins, tight junctions, and for translational applications, such as increasing the permeability of restrictive tissues like the blood-brain barrier or selective targeting of claudin overexpressing cancers. Conversely, there are no specialized molecular tools to study CpE or cCpE, or to modulate or inhibit their functions. We previously reported the development of synthetic antigen-binding fragments (sFabs) that bind cCpE, and low-resolution structures of them bound to claudin/cCpE complexes. Here, we determine high-resolution structures of sFab COP-2 bound to cCpE using X-ray crystallography and cryogenic electron microscopy. The structures and biophysical findings provide the mechanism of COP-2 binding to cCpE and the molecular determinants driving their interactions. These insights can advance the design of new antibody-based tools from our COP-2 scaffold to study or alter cCpE function and give rise to a "Trojan horse" strategy that exploits cCpE's tight junction barrier disrupting function to selectively deliver conjugated therapeutics through normally impermeable tissues.
产气荚膜梭菌肠毒素(CpE)通过与称为闭合蛋白的膜蛋白受体结合,在哺乳动物上皮细胞中引起细胞毒性胃肠道疾病。闭合蛋白通过寡聚化指导细胞/细胞紧密连接的形成,并控制单个细胞之间分子的运输。CpE通过其C末端结构域(cCpE)结合闭合蛋白,并通过其N末端结构域诱导细胞毒性。无毒的cCpE是研究闭合蛋白、紧密连接以及用于转化应用的有用工具,例如增加血脑屏障等限制性组织的通透性或选择性靶向过表达闭合蛋白的癌症。相反,目前没有专门的分子工具来研究CpE或cCpE,或调节或抑制它们的功能。我们之前报道了结合cCpE的合成抗原结合片段(sFabs)的开发,以及它们与闭合蛋白/cCpE复合物结合的低分辨率结构。在这里,我们使用X射线晶体学和低温电子显微镜确定了与cCpE结合的sFab COP-2的高分辨率结构。这些结构和生物物理研究结果提供了COP-2与cCpE结合的机制以及驱动它们相互作用的分子决定因素。这些见解可以推动基于我们的COP-2支架设计新的抗体工具,以研究或改变cCpE的功能,并产生一种“特洛伊木马”策略,利用cCpE破坏紧密连接屏障的功能,通过通常不可渗透的组织选择性递送共轭治疗剂。