Suppr超能文献

产气荚膜梭菌肠毒素的晶体结构显示了β-孔形成毒素的特征。

Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins.

机构信息

Graduate School of Science and Technology, Department of Biomolecular Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan.

出版信息

J Biol Chem. 2011 Jun 3;286(22):19549-55. doi: 10.1074/jbc.M111.228478. Epub 2011 Apr 12.

Abstract

Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ε-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.

摘要

产气荚膜梭菌肠毒素(CPE)是食物中毒的一个原因,被认为是一种形成孔的毒素,通过破坏质膜的选择性通透性来损伤靶细胞。然而,其形成孔的机制和孔的结构特征尚未得到很好的记录。在这里,我们通过 X 射线晶体学在 2.0 Å 处确定了 CPE 的结构。CPE 的整体结构呈细长形状,由三个不同的结构域 I、II 和 III 组成。结构域 I 对应于以前称为 C-CPE 的区域,负责与特定受体紧密连接结合。结构域 II 和 III 包含一个特征模块,类似于 aerolysin、产气荚膜梭菌 ε-毒素和硫磺多孔菌溶血孔形成凝集素等β-孔形成毒素。该模块主要由β-折叠组成,其中两个横跨其全长。结构域 II 和结构域 III 各有三个短的β-折叠,以此区分。此外,结构域 II 有一个位于β-折叠上的α-螺旋。构成α-螺旋和前面的β-折叠的氨基酸序列表现出疏水性残基交替的模式,这是形成β-桶状孔的跨膜域的特征。这些结构特征表明 CPE 是一种β-孔形成毒素。我们还假设,在横跨模块的两条长β-折叠弯曲时,跨膜域插入到膜中,这种机制类似于胆固醇依赖性细胞溶素。

相似文献

1
Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins.
J Biol Chem. 2011 Jun 3;286(22):19549-55. doi: 10.1074/jbc.M111.228478. Epub 2011 Apr 12.
2
Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins.
J Mol Biol. 2011 Oct 14;413(1):138-49. doi: 10.1016/j.jmb.2011.07.066. Epub 2011 Aug 3.
4
Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2.
J Mol Biol. 2014 Sep 9;426(18):3134-3147. doi: 10.1016/j.jmb.2014.07.001. Epub 2014 Jul 11.
5
Structure of the claudin-binding domain of Clostridium perfringens enterotoxin.
J Biol Chem. 2008 Jan 4;283(1):268-274. doi: 10.1074/jbc.M708066200. Epub 2007 Oct 31.
6
Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction.
J Biol Chem. 2010 Jan 1;285(1):401-8. doi: 10.1074/jbc.M109.051417. Epub 2009 Nov 10.
7
Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars.
J Biol Chem. 2005 Apr 29;280(17):17251-9. doi: 10.1074/jbc.M413933200. Epub 2005 Feb 1.
8
Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin.
Infect Immun. 2007 May;75(5):2381-90. doi: 10.1128/IAI.01737-06. Epub 2007 Feb 16.
9
The enteric toxins of Clostridium perfringens.
Rev Physiol Biochem Pharmacol. 2004;152:183-204. doi: 10.1007/s10254-004-0036-2. Epub 2004 Oct 23.
10
Structural Basis of Enterotoxin Activation and Oligomerization by Trypsin.
Toxins (Basel). 2023 Oct 31;15(11):637. doi: 10.3390/toxins15110637.

引用本文的文献

2
A nut-and-bolt assembly of the bimodular large progenitor botulinum neurotoxin complex.
Sci Adv. 2025 Aug 29;11(35):eadx5831. doi: 10.1126/sciadv.adx5831. Epub 2025 Aug 27.
3
Processing Enterotoxin by Intestinal Proteases.
bioRxiv. 2025 Feb 11:2025.02.11.637699. doi: 10.1101/2025.02.11.637699.
4
enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability.
Comput Struct Biotechnol J. 2024 Dec 2;27:287-306. doi: 10.1016/j.csbj.2024.11.048. eCollection 2025.
5
Comparative Phylogenetic Analysis and Protein Prediction Reveal the Taxonomy and Diverse Distribution of Virulence Factors in Foodborne Strains.
Evol Bioinform Online. 2024 Nov 4;20:11769343241294153. doi: 10.1177/11769343241294153. eCollection 2024.
6
Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4.
Structure. 2024 Nov 7;32(11):1936-1951.e5. doi: 10.1016/j.str.2024.09.015. Epub 2024 Oct 8.
7
The biology and pathogenicity of type F: a common human enteropathogen with a new(ish) name.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0014023. doi: 10.1128/mmbr.00140-23. Epub 2024 Jun 12.
9
Unveiling the pathogenic mechanisms of toxins and virulence factors.
Emerg Microbes Infect. 2024 Dec;13(1):2341968. doi: 10.1080/22221751.2024.2341968. Epub 2024 Apr 27.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Crystallization and preliminary crystallographic analysis of the Clostridium perfringens enterotoxin.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Jul 1;66(Pt 7):794-7. doi: 10.1107/S1744309110016507. Epub 2010 Jun 24.
3
Recent developments in classical density modification.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):470-8. doi: 10.1107/S090744490903947X. Epub 2010 Mar 24.
4
Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction.
J Biol Chem. 2010 Jan 1;285(1):401-8. doi: 10.1074/jbc.M109.051417. Epub 2009 Nov 10.
6
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
7
The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism.
Nature. 2009 Jun 4;459(7247):726-30. doi: 10.1038/nature08026.
8
Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin.
J Mol Biol. 2009 Jan 30;385(4):1193-206. doi: 10.1016/j.jmb.2008.11.039. Epub 2008 Nov 27.
10
Fitting molecular fragments into electron density.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):83-9. doi: 10.1107/S0907444907033938. Epub 2007 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验