Torbati Mehdi, Lele Tanmay P, Agrawal Ashutosh
Department of Mechanical Engineering, University of Houston, Houston, TX 77204.
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11094-11099. doi: 10.1073/pnas.1604777113. Epub 2016 Sep 19.
The nuclear envelope is a unique topological structure formed by lipid membranes in eukaryotic cells. Unlike other membrane structures, the nuclear envelope comprises two concentric membrane shells fused at numerous sites with toroid-shaped pores that impart a "geometric" genus on the order of thousands. Despite the intriguing architecture and vital biological functions of the nuclear membranes, how they achieve and maintain such a unique arrangement remains unknown. Here, we used the theory of elasticity and differential geometry to analyze the equilibrium shape and stability of this structure. Our results show that modest in- and out-of-plane stresses present in the membranes not only can define the pore geometry, but also provide a mechanism for destabilizing membranes beyond a critical size and set the stage for the formation of new pores. Our results suggest a mechanism wherein nanoscale buckling instabilities can define the global topology of a nuclear envelope-like structure.
核膜是真核细胞中由脂质膜形成的独特拓扑结构。与其他膜结构不同,核膜由两个同心膜壳组成,它们在许多位点融合,形成环形孔,这些孔赋予了大约数千的“几何”亏格。尽管核膜具有引人入胜的结构和重要的生物学功能,但其如何实现并维持这种独特排列仍不清楚。在此,我们运用弹性理论和微分几何来分析该结构的平衡形状和稳定性。我们的结果表明,膜中存在的适度面内和面外应力不仅可以定义孔的几何形状,还提供了一种机制,使超过临界尺寸的膜失稳,并为新孔的形成奠定基础。我们的结果提出了一种机制,其中纳米尺度的屈曲不稳定性可以定义核膜样结构的整体拓扑。