Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, C.P. 69000, Huajuapan de León, Oaxaca, Mexico.
Laboratorio de Biotecnología de Microalgas, Instituto de Industrias, Universidad del Mar, C.P. 70902, Puerto Ángel, Oaxaca, Mexico.
Appl Microbiol Biotechnol. 2016 Oct;100(20):8667-84. doi: 10.1007/s00253-016-7818-8. Epub 2016 Sep 20.
Despite microalgae recently receiving enormous attention as a potential source of biodiesel, their use is still not feasible as an alternative to fossil fuels. Recently, interest in microalgae has focused on the production of bioactive compounds such as polyunsaturated fatty acids (PUFA), which provide microalgae a high added value. Several considerations need to be assessed for optimizing PUFA production from microalgae. Firstly, a microalgae species that produces high PUFA concentrations should be selected, such as Nannochloropsis gaditana, Isochrysis galbana, Phaeodactylum tricornutum, and Crypthecodinium cohnii, with marine species gaining more attention than do freshwater species. Closed cultivation processes, e.g., photobioreactors, are the most appropriate since temperature, pH, and nutrients can be controlled. An airlift column with LEDs or optical fibers to distribute photons into the culture media can be used at small scale to produce inoculum, while tubular and flat panels are used at commercial scale. Depending on the microalgae, a temperature range from 15 to 28 °C and a pH from 7 to 8 can be employed. Relevant conditions for PUFA production are medium light irradiances (50-300 μmol photons m(-2) s(-1)), air enriched with (0-1 % (v/v) CO2, as well as nitrogen and phosphorous limitation. For research purposes, the most appropriate medium for PUFA production is Bold's Basal, whereas mixotrophic cultivation using sucrose or glucose as the carbon source has been reported for industrial processes. For cell harvesting, the use of tangential flow membrane filtration or disk stack centrifugation is advisable at commercial scale. Current researches on PUFA extraction have focused on the use of organic solvents assisted with ultrasound or microwaves, supercritical fluids, and electroporation or are enzyme assisted. Commercial-scale extraction involves mainly physical methods such as bead mills and expeller presses. All these factors should be taken into account when choosing a PUFA production system, as discussed in this review.
尽管微藻最近作为生物柴油的潜在来源受到了极大的关注,但它们作为化石燃料的替代品仍不可行。最近,人们对微藻的兴趣集中在生物活性化合物的生产上,如多不饱和脂肪酸 (PUFA),这为微藻提供了很高的附加值。为了优化微藻中 PUFA 的生产,需要评估几个因素。首先,应该选择产生高 PUFA 浓度的微藻物种,例如 Nannochloropsis gaditana、Isochrysis galbana、Phaeodactylum tricornutum 和 Crypthecodinium cohnii,其中海洋物种比淡水物种受到更多关注。封闭培养过程,例如光生物反应器,是最合适的,因为可以控制温度、pH 值和营养物质。使用带有 LED 或光纤的气升式柱可以将光子分布到培养基中,可用于小规模生产接种物,而管状和平板则用于商业规模。根据微藻的不同,温度范围可以在 15 到 28°C 之间,pH 值可以在 7 到 8 之间。生产 PUFA 的相关条件是中等光辐照度(50-300 μmol 光子 m(-2) s(-1))、富气(0-1%(v/v)CO2)以及氮磷限制。对于研究目的,最适合生产 PUFA 的培养基是 Bold's Basal,而使用蔗糖或葡萄糖作为碳源的混合营养培养已被报道用于工业过程。在商业规模上,细胞收获最好使用切向流膜过滤或圆盘堆叠离心。目前,关于 PUFA 提取的研究主要集中在使用超声波或微波辅助的有机溶剂、超临界流体、电穿孔或酶辅助提取上。商业规模的提取主要涉及珠磨机和压榨机等物理方法。在选择 PUFA 生产系统时,应考虑所有这些因素,正如本文综述所述。