Suppr超能文献

酵母分化途径中MAPK活性的单细胞动力学及变异性

Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.

作者信息

Conlon Patrick, Gelin-Licht Rita, Ganesan Ambhighainath, Zhang Jin, Levchenko Andre

机构信息

Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205; Yale Systems Biology Institute, Yale University, West Haven, CT 06516; Department of Biomedical Engineering, Yale University, New Haven, CT 06511;

Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205; Yale Systems Biology Institute, Yale University, West Haven, CT 06516; Department of Biomedical Engineering, Yale University, New Haven, CT 06511.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5896-E5905. doi: 10.1073/pnas.1610081113. Epub 2016 Sep 20.

Abstract

In response to pheromones, yeast cells activate a MAPK pathway to direct processes important for mating, including gene induction, cell-cycle arrest, and polarized cell growth. Although a variety of assays have been able to elucidate signaling activities at multiple steps in the pathway, measurements of MAPK activity during the pheromone response have remained elusive, and our understanding of single-cell signaling behavior is incomplete. Using a yeast-optimized FRET-based mammalian Erk-activity reporter to monitor Fus3 and Kss1 activity in live yeast cells, we demonstrate that overall mating MAPK activity exhibits distinct temporal dynamics, rapid reversibility, and a graded dose dependence around the K of the receptor, where phenotypic transitions occur. The complex dose response was found to be largely a consequence of two feedbacks involving cyclin-mediated scaffold phosphorylation and Fus3 autoregulation. Distinct cell cycle-dependent response patterns comprised a large portion of the cell-to-cell variability at each dose, constituting the major source of extrinsic noise in coupling activity to downstream gene-expression responses. Additionally, we found diverse spatial MAPK activity patterns to emerge over time in cells undergoing default, gradient, and true mating responses. Furthermore, ramping up and rapid loss of activity were closely associated with zygote formation in mating-cell pairs, supporting a role for elevated MAPK activity in successful cell fusion and morphogenic reorganization. Altogether, these findings present a detailed view of spatiotemporal MAPK activity during the pheromone response, elucidating its role in mediating complex long-term developmental fates in a unicellular differentiation system.

摘要

作为对信息素的反应,酵母细胞激活一条丝裂原活化蛋白激酶(MAPK)信号通路,以指导对交配至关重要的过程,包括基因诱导、细胞周期停滞和极化细胞生长。尽管各种检测方法已能够阐明该信号通路多个步骤中的信号传导活性,但在信息素反应过程中对MAPK活性的测量仍然难以捉摸,而且我们对单细胞信号传导行为的理解并不完整。我们使用一种经过酵母优化的基于荧光共振能量转移(FRET)的哺乳动物细胞外信号调节激酶(Erk)活性报告基因,来监测活酵母细胞中Fus3和Kss1的活性,结果表明,在受体的K值附近,整体交配MAPK活性呈现出独特的时间动态、快速可逆性和分级剂量依赖性,而在该K值处会发生表型转变。我们发现,复杂的剂量反应很大程度上是由两个反馈导致的,这两个反馈涉及细胞周期蛋白介导的支架磷酸化和Fus3的自动调节。在每个剂量下,不同的细胞周期依赖性反应模式构成了细胞间变异性的很大一部分,是将活性与下游基因表达反应偶联时外在噪声的主要来源。此外,我们发现,在经历默认、梯度和真正交配反应的细胞中,随着时间的推移会出现多种空间MAPK活性模式。此外,活性的增强和快速丧失与交配细胞对中合子的形成密切相关,这支持了MAPK活性升高在成功细胞融合和形态发生重组中的作用。总之,这些发现展示了信息素反应过程中时空MAPK活性的详细情况,阐明了其在单细胞分化系统中介导复杂长期发育命运的作用。

相似文献

1
Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5896-E5905. doi: 10.1073/pnas.1610081113. Epub 2016 Sep 20.
2
Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.
J Biol Chem. 2017 Dec 15;292(50):20354-20361. doi: 10.1074/jbc.AC117.000548. Epub 2017 Nov 9.
3
MAPK specificity in the yeast pheromone response independent of transcriptional activation.
Curr Biol. 2001 Aug 21;11(16):1266-71. doi: 10.1016/s0960-9822(01)00370-0.
5
Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5.
Mol Cell. 2008 Jun 6;30(5):649-56. doi: 10.1016/j.molcel.2008.04.016.
6
Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα.
Mol Biol Cell. 2015 Sep 15;26(18):3343-58. doi: 10.1091/mbc.E15-03-0176. Epub 2015 Jul 15.
8
Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development.
Curr Genet. 2004 Dec;46(6):331-42. doi: 10.1007/s00294-004-0545-1. Epub 2004 Nov 19.
10
Quantitative proteomics reveals a Gα/MAPK signaling hub that controls pheromone-induced cellular polarization in yeast.
J Proteomics. 2019 Sep 15;207:103467. doi: 10.1016/j.jprot.2019.103467. Epub 2019 Jul 24.

引用本文的文献

3
Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals.
iScience. 2024 Aug 31;27(10):110860. doi: 10.1016/j.isci.2024.110860. eCollection 2024 Oct 18.
4
Live cell microscopy: From image to insight.
Biophys Rev (Melville). 2022 Apr 21;3(2):021302. doi: 10.1063/5.0082799. eCollection 2022 Jun.
5
Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study.
Philos Trans R Soc Lond B Biol Sci. 2024 Apr 22;379(1900):20230052. doi: 10.1098/rstb.2023.0052. Epub 2024 Mar 4.
6
Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone.
iScience. 2023 Sep 9;26(10):107885. doi: 10.1016/j.isci.2023.107885. eCollection 2023 Oct 20.
7
An improved Erk biosensor detects oscillatory Erk dynamics driven by mitotic erasure during early development.
Dev Cell. 2023 Dec 4;58(23):2802-2818.e5. doi: 10.1016/j.devcel.2023.08.021. Epub 2023 Sep 14.
8
Optimal inference of molecular interaction dynamics in FRET microscopy.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2211807120. doi: 10.1073/pnas.2211807120. Epub 2023 Apr 4.
9
Polarization and cell-fate decision facilitated by the adaptor Ste50p in Saccharomyces cerevisiae.
PLoS One. 2022 Dec 20;17(12):e0278614. doi: 10.1371/journal.pone.0278614. eCollection 2022.
10
Mechanism of commitment to a mating partner in .
Mol Biol Cell. 2022 Oct 1;33(12):ar112. doi: 10.1091/mbc.E22-02-0043. Epub 2022 Aug 10.

本文引用的文献

1
Local Pheromone Release from Dynamic Polarity Sites Underlies Cell-Cell Pairing during Yeast Mating.
Curr Biol. 2016 Apr 25;26(8):1117-25. doi: 10.1016/j.cub.2016.02.064. Epub 2016 Mar 24.
3
High-sensitivity measurements of multiple kinase activities in live single cells.
Cell. 2014 Jun 19;157(7):1724-34. doi: 10.1016/j.cell.2014.04.039.
4
Optimization of ERK activity biosensors for both ratiometric and lifetime FRET measurements.
Sensors (Basel). 2014 Jan 10;14(1):1140-54. doi: 10.3390/s140101140.
6
Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines.
Science. 2013 Nov 29;342(6162):1107-11. doi: 10.1126/science.1245622.
7
Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation.
Mol Cell. 2013 Nov 21;52(4):529-40. doi: 10.1016/j.molcel.2013.09.015. Epub 2013 Oct 17.
8
A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space.
Sci Signal. 2013 Jul 23;6(285):rs12. doi: 10.1126/scisignal.2004135.
9
Dissecting genealogy and cell cycle as sources of cell-to-cell variability in MAPK signaling using high-throughput lineage tracking.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11403-8. doi: 10.1073/pnas.1215850110. Epub 2013 Jun 26.
10
Mate and fuse: how yeast cells do it.
Open Biol. 2013 Mar 6;3(3):130008. doi: 10.1098/rsob.130008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验