Suppr超能文献

丝裂原活化蛋白激酶(MAPK)动力学决定酵母交配反应中的细胞命运。

Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

作者信息

Li Yang, Roberts Julie, AkhavanAghdam Zohreh, Hao Nan

机构信息

From the Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093.

From the Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093

出版信息

J Biol Chem. 2017 Dec 15;292(50):20354-20361. doi: 10.1074/jbc.AC117.000548. Epub 2017 Nov 9.

Abstract

In the yeast , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions.

摘要

在酵母中,暴露于交配信息素会激活一个典型的丝裂原活化蛋白激酶(MAPK)级联反应,并引发剂量依赖性的分化反应。高剂量的信息素会诱导酵母细胞生长停滞并形成类似shmoo的形态,而低剂量的信息素则会引发细胞伸长生长。先前的群体水平分析表明,MAPK Fus3在介导这种分化转换中起重要作用。为了进一步研究Fus3如何在单细胞水平上控制命运决定过程,我们开发了一种基于特定易位的报告基因,用于监测单个活细胞中的Fus3活性。使用该报告基因,我们在分化为不同命运的单个细胞中观察到了Fus3激活的显著不同的动态模式。致力于生长停滞和shmoo形成的细胞表现出持续的Fus3激活。相比之下,大多数经历伸长生长的细胞显示出Fus3活性的延迟逐渐增加或搏动动态。此外,我们发现用特定抑制剂化学干扰Fus3动态可以有效地重新引导交配分化,证实了Fus3动态在驱动细胞命运决定中的因果作用。MAPK在哺乳动物中介导增殖和分化信号,并且是许多癌症的治疗靶点。我们的结果强调了MAPK动态在调节单细胞反应中的重要性,并开辟了MAPK信号动态可能成为治疗干预中药理学靶点的可能性。

相似文献

1
Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.
J Biol Chem. 2017 Dec 15;292(50):20354-20361. doi: 10.1074/jbc.AC117.000548. Epub 2017 Nov 9.
2
Quantitative proteomics reveals a Gα/MAPK signaling hub that controls pheromone-induced cellular polarization in yeast.
J Proteomics. 2019 Sep 15;207:103467. doi: 10.1016/j.jprot.2019.103467. Epub 2019 Jul 24.
3
Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5896-E5905. doi: 10.1073/pnas.1610081113. Epub 2016 Sep 20.
4
MAPK specificity in the yeast pheromone response independent of transcriptional activation.
Curr Biol. 2001 Aug 21;11(16):1266-71. doi: 10.1016/s0960-9822(01)00370-0.
9
Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα.
Mol Biol Cell. 2015 Sep 15;26(18):3343-58. doi: 10.1091/mbc.E15-03-0176. Epub 2015 Jul 15.
10
Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates.
Curr Biol. 1997 Apr 1;7(4):228-38. doi: 10.1016/s0960-9822(06)00118-7.

引用本文的文献

2
Leveraging Structured Biological Knowledge for Counterfactual Inference: A Case Study of Viral Pathogenesis.
IEEE Trans Big Data. 2021 Jan 18;7(1):25-37. doi: 10.1109/TBDATA.2021.3050680. eCollection 2021 Mar 1.
3
The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of .
Front Microbiol. 2023 May 4;14:1139679. doi: 10.3389/fmicb.2023.1139679. eCollection 2023.
4
Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation.
Mol Cell Biol. 2023;43(5):200-222. doi: 10.1080/10985549.2023.2198171. Epub 2023 Apr 28.
6
Yeast cell fate control by temporal redundancy modulation of transcription factor paralogs.
Nat Commun. 2021 May 25;12(1):3145. doi: 10.1038/s41467-021-23425-0.
9
A protein kinase A-regulated network encodes short- and long-lived cellular memories.
Sci Signal. 2020 May 19;13(632):eaay3585. doi: 10.1126/scisignal.aay3585.
10
Quantitative analysis of the yeast pheromone pathway.
Yeast. 2019 Aug;36(8):495-518. doi: 10.1002/yea.3395. Epub 2019 Jun 27.

本文引用的文献

1
Reconstructing the regulatory circuit of cell fate determination in yeast mating response.
PLoS Comput Biol. 2017 Jul 24;13(7):e1005671. doi: 10.1371/journal.pcbi.1005671. eCollection 2017 Jul.
3
Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5896-E5905. doi: 10.1073/pnas.1610081113. Epub 2016 Sep 20.
5
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells.
Nat Protoc. 2015 Aug;10(8):1181-97. doi: 10.1038/nprot.2015.079. Epub 2015 Jul 9.
6
Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition.
Cell. 2015 Mar 12;160(6):1182-95. doi: 10.1016/j.cell.2015.02.032.
7
Cellular noise suppression by the regulator of G protein signaling Sst2.
Mol Cell. 2014 Jul 3;55(1):85-96. doi: 10.1016/j.molcel.2014.05.019. Epub 2014 Jun 19.
8
High-sensitivity measurements of multiple kinase activities in live single cells.
Cell. 2014 Jun 19;157(7):1724-34. doi: 10.1016/j.cell.2014.04.039.
9
Feedforward regulation ensures stability and rapid reversibility of a cellular state.
Mol Cell. 2013 Jun 27;50(6):856-68. doi: 10.1016/j.molcel.2013.04.014. Epub 2013 May 16.
10
Encoding and decoding cellular information through signaling dynamics.
Cell. 2013 Feb 28;152(5):945-56. doi: 10.1016/j.cell.2013.02.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验