Suppr超能文献

利用结构和非结构特征自动检测青光眼。

Automated detection of glaucoma using structural and non structural features.

作者信息

Salam Anum A, Khalil Tehmina, Akram M Usman, Jameel Amina, Basit Imran

机构信息

National University of Sciences and Technology, Islamabad, Pakistan.

Bahria University, Islamabad, Pakistan.

出版信息

Springerplus. 2016 Sep 9;5(1):1519. doi: 10.1186/s40064-016-3175-4. eCollection 2016.

Abstract

Glaucoma is a chronic disease often called "silent thief of sight" as it has no symptoms and if not detected at an early stage it may cause permanent blindness. Glaucoma progression precedes some structural changes in the retina which aid ophthalmologists to detect glaucoma at an early stage and stop its progression. Fundoscopy is among one of the biomedical imaging techniques to analyze the internal structure of retina. Our proposed technique provides a novel algorithm to detect glaucoma from digital fundus image using a hybrid feature set. This paper proposes a novel combination of structural (cup to disc ratio) and non-structural (texture and intensity) features to improve the accuracy of automated diagnosis of glaucoma. The proposed method introduces a suspect class in automated diagnosis in case of any conflict in decision from structural and non-structural features. The evaluation of proposed algorithm is performed using a local database containing fundus images from 100 patients. This system is designed to refer glaucoma cases from rural areas to specialists and the motivation behind introducing suspect class is to ensure high sensitivity of proposed system. The average sensitivity and specificity of proposed system are 100 and 87 % respectively.

摘要

青光眼是一种慢性疾病,常被称为“视力的无声窃贼”,因为它没有症状,如果在早期未被发现,可能会导致永久性失明。青光眼的进展先于视网膜的一些结构变化,这有助于眼科医生在早期检测到青光眼并阻止其进展。眼底镜检查是分析视网膜内部结构的生物医学成像技术之一。我们提出的技术提供了一种使用混合特征集从数字眼底图像中检测青光眼的新算法。本文提出了一种结构特征(杯盘比)和非结构特征(纹理和强度)的新颖组合,以提高青光眼自动诊断的准确性。所提出的方法在结构和非结构特征的决策出现冲突时,在自动诊断中引入了一个可疑类别。使用包含100名患者眼底图像的本地数据库对所提出的算法进行评估。该系统旨在将农村地区的青光眼病例转诊给专家,引入可疑类别的动机是确保所提出系统的高灵敏度。所提出系统的平均灵敏度和特异性分别为100%和87%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb0/5017972/31e55ec9a4f4/40064_2016_3175_Fig1_HTML.jpg

相似文献

1
Automated detection of glaucoma using structural and non structural features.
Springerplus. 2016 Sep 9;5(1):1519. doi: 10.1186/s40064-016-3175-4. eCollection 2016.
2
An adaptive threshold based image processing technique for improved glaucoma detection and classification.
Comput Methods Programs Biomed. 2015 Nov;122(2):229-44. doi: 10.1016/j.cmpb.2015.08.002. Epub 2015 Aug 10.
3
Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:126-9. doi: 10.1109/EMBC.2014.6943545.
4
Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques.
Australas Phys Eng Sci Med. 2015 Dec;38(4):643-55. doi: 10.1007/s13246-015-0377-y. Epub 2015 Sep 23.
5
Computer-aided diagnosis of glaucoma using fundus images: A review.
Comput Methods Programs Biomed. 2018 Oct;165:1-12. doi: 10.1016/j.cmpb.2018.07.012. Epub 2018 Jul 26.
6
Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index.
Comput Biol Med. 2016 Aug 1;75:54-62. doi: 10.1016/j.compbiomed.2016.04.015. Epub 2016 May 17.
7
Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
Comput Methods Programs Biomed. 2016 Feb;124:108-20. doi: 10.1016/j.cmpb.2015.10.010. Epub 2015 Oct 23.
8
Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile.
PLoS One. 2019 Jan 10;14(1):e0209409. doi: 10.1371/journal.pone.0209409. eCollection 2019.

引用本文的文献

2
Revolutionizing diabetic eye disease detection: retinal image analysis with cutting-edge deep learning techniques.
PeerJ Comput Sci. 2024 Sep 23;10:e2186. doi: 10.7717/peerj-cs.2186. eCollection 2024.
3
The utilization of artificial intelligence in glaucoma: diagnosis versus screening.
Front Ophthalmol (Lausanne). 2024 Mar 6;4:1368081. doi: 10.3389/fopht.2024.1368081. eCollection 2024.
4
Automated Classification of Physiologic, Glaucomatous, and Glaucoma-Suspected Optic Discs Using Machine Learning.
Diagnostics (Basel). 2024 May 22;14(11):1073. doi: 10.3390/diagnostics14111073.
5
Computer-Aided Discrimination of Glaucoma Patients from Healthy Subjects Using the RETeval Portable Device.
Diagnostics (Basel). 2024 Feb 6;14(4):349. doi: 10.3390/diagnostics14040349.
6
Intraocular nano-microscale drug delivery systems for glaucoma treatment: design strategies and recent progress.
J Nanobiotechnology. 2023 Mar 10;21(1):84. doi: 10.1186/s12951-023-01838-x.
7
Artificial intelligence in ophthalmology: A multidisciplinary approach.
Integr Med Res. 2022 Dec;11(4):100888. doi: 10.1016/j.imr.2022.100888. Epub 2022 Sep 20.
8
A Comprehensive Review of Methods and Equipment for Aiding Automatic Glaucoma Tracking.
Diagnostics (Basel). 2022 Apr 8;12(4):935. doi: 10.3390/diagnostics12040935.
9
Application of advanced magnetic resonance imaging in glaucoma: a narrative review.
Quant Imaging Med Surg. 2022 Mar;12(3):2106-2128. doi: 10.21037/qims-21-790.

本文引用的文献

1
A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis.
Comput Biol Med. 2015 Aug;63:196-207. doi: 10.1016/j.compbiomed.2015.05.018. Epub 2015 Jun 10.
2
Sparse dissimilarity-constrained coding for glaucoma screening.
IEEE Trans Biomed Eng. 2015 May;62(5):1395-403. doi: 10.1109/TBME.2015.2389234. Epub 2015 Jan 9.
3
Local patch reconstruction framework for optic cup localization in glaucoma detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5418-21. doi: 10.1109/EMBC.2014.6944851.
4
Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
IEEE Trans Med Imaging. 2013 Jun;32(6):1019-32. doi: 10.1109/TMI.2013.2247770. Epub 2013 Feb 18.
5
An ensembling approach for optic cup detection based on spatial heuristic analysis in retinal fundus images.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1426-9. doi: 10.1109/EMBC.2012.6346207.
6
Automated diagnosis of glaucoma using texture and higher order spectra features.
IEEE Trans Inf Technol Biomed. 2011 May;15(3):449-55. doi: 10.1109/TITB.2011.2119322. Epub 2011 Feb 24.
7
Mixture model-based approach for optic cup segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4817-20. doi: 10.1109/IEMBS.2010.5627901.
8
The number of people with glaucoma worldwide in 2010 and 2020.
Br J Ophthalmol. 2006 Mar;90(3):262-7. doi: 10.1136/bjo.2005.081224.
9
The global impact of glaucoma.
Bull World Health Organ. 1994;72(3):323-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验