Suppr超能文献

用于具有序列相关设置时间和学习效应的多目标单机分组调度问题的混合帕累托人工蜂群算法

Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

作者信息

Yue Lei, Guan Zailin, Saif Ullah, Zhang Fei, Wang Hao

机构信息

State Key Lab of Digital Manufacturing Equipment and Technology, HUST-SANY Joint Lab of Advanced Manufacturing, Huazhong University of Science and Technology, Wuhan, 430074 People's Republic of China.

State Key Lab of Digital Manufacturing Equipment and Technology, HUST-SANY Joint Lab of Advanced Manufacturing, Huazhong University of Science and Technology, Wuhan, 430074 People's Republic of China ; Department of Industrial Engineering, University of Engineering and Technology, Taxila, Pakistan.

出版信息

Springerplus. 2016 Sep 17;5(1):1593. doi: 10.1186/s40064-016-3265-3. eCollection 2016.

Abstract

Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

摘要

组调度对于高效且具有成本效益的生产系统而言至关重要。然而,组与组之间存在设置时间,这就需要通过高效地对组进行排序来减少它。当前的研究聚焦于一个与序列相关的组调度问题,其目标除了使总加权拖期最小化之外,还要使完工时间最小化。在大多数生产调度问题中,作业的处理时间被假定为固定的。然而,由于“学习效应”,作业的实际处理时间可能会减少。文献中很少考虑将与序列相关的组调度问题和学习效应相结合。因此,当前的研究同时考虑了一个具有与序列相关的设置时间和学习效应的单机组调度问题。针对当前问题,提出了一种带有遗传算法某些步骤的新型混合帕累托人工蜂群算法(HPABC)来获取帕累托解。此外,使用所提出的HPABC对五种不同规模的测试问题(小、中小、中、大中、大)进行了测试。采用田口方法为每个问题类别调整所提出的HPABC的有效参数。将HPABC的性能与三种著名的多目标优化算法进行比较,即改进的强度帕累托进化算法(SPEA2)、非支配排序遗传算法II(NSGAII)和粒子群优化算法(PSO)。结果表明,HPABC在性能上优于SPEA2、NSGAII和PSO,并且对于几乎所有不同规模问题的实例,在多样性和质量方面都给出了更好的帕累托最优解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76b/5026988/ea8b3e409cd5/40064_2016_3265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验