Montoye Alexander H K, Pivarnik James M, Mudd Lanay M, Biswas Subir, Pfeiffer Karin A
Clinical Exercise Physiology Program, School of Kinesiology, 2000 W. University Ave., Ball State University, Muncie, IN 47306, USA.
Physiol Meas. 2016 Oct;37(10):1770-1784. doi: 10.1088/0967-3334/37/10/1770. Epub 2016 Sep 21.
(1) Develop artificial neural network (ANN) models for wrist accelerometer data which can predict energy expenditure (EE) using data collected from either wrist. (2) Develop ANNs for detecting the wrist on which the accelerometer was worn. Forty-four adults wore GENEActiv accelerometers on the left and right wrists and a portable metabolic analyzer while participating in a 90 min semi-structured activity protocol. Participants performed 14 sedentary, lifestyle, exercise, and ambulatory activities and were allowed to choose activity order, duration, and intensity. ANNs were created to predict EE and wrist detection using a leave-one-out cross-validation. In total, 12 combinations of feature sets (mean and variance of raw, vector magnitude, and absolute value data), training methods (left- and right- wrist), and testing methods (left- and right-wrist data) were used to develop EE prediction ANNs. Accuracy of the ANNs was evaluated using correlations, root mean square error (RMSE), and bias, using metabolic analyzer data as the criterion for EE. ANNs using raw data from the same wrist (e.g. EE predicted from right wrist ANNs using accelerometer data from right wrist) had the highest accuracy for EE prediction (r = 0.84, RMSE = 1.25-1.26 METs); conversely, opposite-wrist prediction accuracy (e.g. EE predicted from right wrist ANNs using accelerometer data from left wrist) was lower (r = 0.60-0.64, RMSE = 1.93-2.01 METs). Preprocessing into absolute values prior to ANN development allowed for, high EE prediction accuracy, with no difference in accuracy for same- versus opposite-wrist prediction (r = 0.80-0.83, RMSE = 1.30-1.49 METs). Wrist detection ANNs correctly determined wrist placement 100% of the time. Highly accurate, wrist-independent EE prediction ANNs were developed by computing absolute values of raw acceleration data prior to ANN development. This method provides a potential approach for advancing predictive accuracy of wrist-worn accelerometers.
(1) 为腕部加速度计数据开发人工神经网络(ANN)模型,该模型可利用从任一手腕收集的数据预测能量消耗(EE)。(2) 开发用于检测佩戴加速度计手腕的人工神经网络。44名成年人在参与90分钟半结构化活动方案时,在左右手腕佩戴GENEActiv加速度计并使用便携式代谢分析仪。参与者进行了14种久坐、生活方式、运动和动态活动,并可自行选择活动顺序、持续时间和强度。使用留一法交叉验证创建人工神经网络来预测能量消耗和手腕检测情况。总共使用了12种特征集(原始数据、向量大小和绝对值数据的均值和方差)、训练方法(左手腕和右手腕)以及测试方法(左手腕和右手腕数据)的组合来开发能量消耗预测人工神经网络。以代谢分析仪数据作为能量消耗的标准,使用相关性、均方根误差(RMSE)和偏差来评估人工神经网络的准确性。使用来自同一手腕的原始数据的人工神经网络(例如,使用右手腕加速度计数据从右手腕人工神经网络预测能量消耗)在能量消耗预测方面具有最高的准确性(r = 0.84,RMSE = 1.25 - 1.26梅脱);相反,对侧手腕预测准确性(例如,使用左手腕加速度计数据从右手腕人工神经网络预测能量消耗)较低(r = 0.60 - 0.64,RMSE = 1.93 - 2.01梅脱)。在人工神经网络开发之前预处理为绝对值可实现较高的能量消耗预测准确性,同侧与对侧手腕预测的准确性没有差异(r = 0.80 - 0.83,RMSE = 1.30 - 1.49梅脱)。手腕检测人工神经网络在100%的时间内正确确定了手腕位置。通过在人工神经网络开发之前计算原始加速度数据的绝对值,开发出了高度准确、不依赖手腕的能量消耗预测人工神经网络。这种方法为提高腕部佩戴加速度计的预测准确性提供了一种潜在途径。