Suppr超能文献

用于从原始加速度计数据预测能量消耗的线性和非线性模型比较。

Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

作者信息

Montoye Alexander H K, Begum Munni, Henning Zachary, Pfeiffer Karin A

机构信息

Department of Integrative Physiology and Health Science, Alma College, 614 W. Superior Alma, MI 48801, USA. Clinical Exercise Physiology Program, Ball State University, 2000 W. University Ave. Muncie, IN 47306, USA.

出版信息

Physiol Meas. 2017 Feb;38(2):343-357. doi: 10.1088/1361-6579/38/2/343. Epub 2017 Jan 20.

Abstract

This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

摘要

本研究有三个目的,均与评估穿戴式加速度计预测能量消耗(EE)的准确性有关:(1)比较线性回归与线性混合模型;(2)比较线性模型与人工神经网络模型;(3)比较放置在臀部、大腿和手腕处的加速度计的准确性。40名个体按照90分钟基于实验室的半结构化方案进行了13项活动。参与者在右臀部、右大腿和双腕佩戴加速度计,并使用便携式代谢分析仪(作为EE标准)。针对每个加速度计开发了四种EE预测模型:线性回归、线性混合和两种人工神经网络模型。使用相关性、均方根误差(RMSE)和偏差评估EE预测准确性,并使用重复测量方差分析在模型和加速度计之间进行比较。对于所有加速度计放置位置,线性回归和线性混合模型之间的相关性或RMSE均无显著差异(相关性:r = 0.71 - 0.88,RMSE:1.11 - 1.61梅脱;p > 0.05)。对于佩戴在大腿上的加速度计,线性模型和人工神经网络模型之间的相关性或RMSE没有差异(人工神经网络模型 - 相关性:r = 0.89,RMSE:1.07 - 1.08梅脱。线性模型 - 相关性:r = 0.88,RMSE:1.10 - 1.11梅脱;p > 0.05)。相反,对于佩戴在臀部的加速度计,一种人工神经网络模型的相关性高于两种线性模型且RMSE更低(人工神经网络模型 - 相关性:r = 0.88,RMSE:1.12梅脱。线性模型 - 相关性:r = 0.86,RMSE:1.18 - 1.19梅脱;p < 0.05),对于佩戴在手腕的加速度计,两种人工神经网络模型的相关性均高于两种线性模型且RMSE更低(人工神经网络模型 - 相关性:r = 0.82 - 0.84,RMSE:1.26 - 1.32梅脱。线性模型 - 相关性:r = 0.71 - 0.73,RMSE:1.55 - 1.61梅脱;p < 0.01)。对于使用佩戴在手腕的加速度计的研究,机器学习模型在EE预测准确性方面比线性模型有显著提高。相反,对于佩戴在臀部和大腿的加速度计,线性模型显示出与机器学习模型相似的EE预测准确性,并且可能是用于预测臀部或大腿佩戴的加速度计的EE的可行替代建模技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验