Suppr超能文献

优秀短距离游泳运动员中推力产生的功率与克服阻力的功率之间的关系。

The Relationship between Power Generated by Thrust and Power to Overcome Drag in Elite Short Distance Swimmers.

作者信息

Gatta Giorgio, Cortesi Matteo, Zamparo Paola

机构信息

Department for Life Quality Studies, Rimini, School of Pharmacy, Biotechnology and Sport Science, University of Bologna, Bologna, Italy.

Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy.

出版信息

PLoS One. 2016 Sep 21;11(9):e0162387. doi: 10.1371/journal.pone.0162387. eCollection 2016.

Abstract

At constant average speed (v), a balance between thrust force (Ft) and drag force (Fd) should occur: Ft-Fd = 0; hence the power generated by thrust forces (Pt = Ft·v) should be equal to the power needed to overcome drag forces at that speed (Pd = Fd·v); the aim of this study was to measure Pt (tethered swims), to estimate Pd in active conditions (at sprint speed) and to compare these values. 10 front crawl male elite swimmers (expertise: 93.1 ± 2.4% of 50 m world record) participated to the study; their sprint speed was measured during a 30 m maximal trial. Ft was assessed during a 15 s tethered effort; passive towing measurement were performed to determine speed specific drag in passive conditions (kP = passive drag force/v2); drag force in active conditions (Fd = kA·v2) was calculated assuming that kA = 1.5·kP. Average sprint speed was 2.20 ± 0.07 m·s-1; kA, at this speed, was 37.2 ± 2.7 N·s2·m-2. No significant differences (paired t-test: p > 0.8) were observed between Pt (399 ± 56 W) and Pd (400 ± 57 W) and a strong correlation (R = 0.95, p < 0.001) was observed between these two parameters. The Bland-Altman plot indicated a good agreement and a small, acceptable, error (bias: -0.89 W, limits of agreement: -25.5 and 23.7 W). Power thrust experiments can thus be suggested as a valid tool for estimating a swimmer's power propulsion.

摘要

在恒定平均速度(v)下,推力(Ft)和阻力(Fd)之间应达到平衡:Ft - Fd = 0;因此,推力产生的功率(Pt = Ft·v)应等于以该速度克服阻力所需的功率(Pd = Fd·v);本研究的目的是测量Pt(系绳游泳),估计活跃状态(冲刺速度)下的Pd,并比较这些值。10名男子自由泳精英运动员(专业水平:50米世界纪录的93.1±2.4%)参与了该研究;在30米最大强度测试中测量了他们的冲刺速度。在15秒的系绳用力过程中评估Ft;进行被动拖曳测量以确定被动状态下的速度特定阻力(kP = 被动阻力/v2);假设kA = 1.5·kP,计算活跃状态下的阻力(Fd = kA·v2)。平均冲刺速度为2.20±0.07米·秒-1;在此速度下,kA为37.2±2.7牛·秒2·米-2。未观察到Pt(399±56瓦)和Pd(400±57瓦)之间存在显著差异(配对t检验:p > 0.8),并且观察到这两个参数之间存在强相关性(R = 0.95,p < 0.001)。Bland-Altman图表明一致性良好且误差小、可接受(偏差:-0.89瓦,一致性界限:-25.5和23.7瓦)。因此,可以建议功率推力实验作为估计游泳运动员功率推进的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a63/5031421/9a8ed013c401/pone.0162387.g001.jpg

相似文献

1
The Relationship between Power Generated by Thrust and Power to Overcome Drag in Elite Short Distance Swimmers.
PLoS One. 2016 Sep 21;11(9):e0162387. doi: 10.1371/journal.pone.0162387. eCollection 2016.
2
Estimating Active Drag Based on Full and Semi-Tethered Swimming Tests.
J Sports Sci Med. 2024 Mar 1;23(1):17-24. doi: 10.52082/jssm.2024.17. eCollection 2024 Mar.
3
How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
Sports Biomech. 2023 Dec;22(12):1552-1571. doi: 10.1080/14763141.2021.1959946. Epub 2021 Aug 23.
4
The determination of drag in front crawl swimming.
J Biomech. 2004 Nov;37(11):1655-63. doi: 10.1016/j.jbiomech.2004.02.020.
5
Characterization of speed fluctuation and drag force in young swimmers: a gender comparison.
Hum Mov Sci. 2013 Dec;32(6):1214-25. doi: 10.1016/j.humov.2012.07.009. Epub 2013 Sep 24.
6
An estimation of drag in front crawl swimming.
J Biomech. 1987;20(5):543-6. doi: 10.1016/0021-9290(87)90254-5.
7
Sprint Performance in Arms-Only Front Crawl Swimming Is Strongly Associated With the Power-To-Drag Ratio.
Front Sports Act Living. 2022 Mar 1;4:758095. doi: 10.3389/fspor.2022.758095. eCollection 2022.
8
Active drag related to velocity in male and female swimmers.
J Biomech. 1988;21(5):435-8. doi: 10.1016/0021-9290(88)90149-2.
9
Mechanical power, thrust power and propelling efficiency: relationships with elite sprint swimming performance.
J Sports Sci. 2018 Mar;36(5):506-512. doi: 10.1080/02640414.2017.1322214. Epub 2017 May 4.
10
Relationships between coordination, active drag and propelling efficiency in crawl.
Hum Mov Sci. 2015 Feb;39:55-64. doi: 10.1016/j.humov.2014.10.009. Epub 2014 Nov 20.

引用本文的文献

1
Arm Propulsion in Front Crawl Stroke.
Sports (Basel). 2025 Jan 2;13(1):6. doi: 10.3390/sports13010006.
2
Endurance in Long-Distance Swimming and the Use of Nutritional Aids.
Nutrients. 2024 Nov 19;16(22):3949. doi: 10.3390/nu16223949.
3
Insights on the Selection of the Coefficient of Variation to Assess Speed Fluctuation in Swimming.
J Funct Morphol Kinesiol. 2024 Jul 25;9(3):129. doi: 10.3390/jfmk9030129.
4
Changes in Young Swimmers' In-Water Force, Performance, Kinematics, and Anthropometrics over a Full Competitive Season.
J Hum Kinet. 2024 May 17;93:5-15. doi: 10.5114/jhk/183065. eCollection 2024 Jul.
5
6
Estimating Active Drag Based on Full and Semi-Tethered Swimming Tests.
J Sports Sci Med. 2024 Mar 1;23(1):17-24. doi: 10.52082/jssm.2024.17. eCollection 2024 Mar.
8
Numerical and experimental methods used to evaluate active drag in swimming: A systematic narrative review.
Front Physiol. 2022 Oct 20;13:938658. doi: 10.3389/fphys.2022.938658. eCollection 2022.
9
Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity.
Int J Environ Res Public Health. 2022 Jun 28;19(13):7902. doi: 10.3390/ijerph19137902.
10
Exploration of Internal and External Factors of Swimmers' Performance Based on Biofluid Mechanics and Computer Simulation.
Int J Environ Res Public Health. 2021 Jun 15;18(12):6471. doi: 10.3390/ijerph18126471.

本文引用的文献

1
Planimetric frontal area in the four swimming strokes: implications for drag, energetics and speed.
Hum Mov Sci. 2015 Feb;39:41-54. doi: 10.1016/j.humov.2014.06.010. Epub 2014 Nov 20.
2
The power output and sprinting performance of young swimmers.
J Strength Cond Res. 2015 Feb;29(2):440-50. doi: 10.1519/JSC.0000000000000626.
3
Passive drag reduction using full-body swimsuits: the role of body position.
J Strength Cond Res. 2014 Nov;28(11):3164-71. doi: 10.1519/JSC.0000000000000508.
4
Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.
J Strength Cond Res. 2014 Nov;28(11):3093-9. doi: 10.1519/JSC.0000000000000509.
5
Effect of swim cap model on passive drag.
J Strength Cond Res. 2013 Oct;27(10):2904-8. doi: 10.1519/JSC.0b013e318280cc3a.
6
An updated protocol to assess arm swimming power in front crawl.
Int J Sports Med. 2013 Apr;34(4):324-9. doi: 10.1055/s-0032-1323721. Epub 2012 Oct 12.
7
Markerless analysis of front crawl swimming.
J Biomech. 2011 Aug 11;44(12):2236-42. doi: 10.1016/j.jbiomech.2011.06.003. Epub 2011 Jun 29.
8
Energetics of swimming: a historical perspective.
Eur J Appl Physiol. 2011 Mar;111(3):367-78. doi: 10.1007/s00421-010-1433-7. Epub 2010 Apr 27.
9
Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
J Biomech. 2010 Apr 19;43(6):1111-7. doi: 10.1016/j.jbiomech.2009.12.014. Epub 2010 Jan 27.
10
Active and passive drag: the role of trunk incline.
Eur J Appl Physiol. 2009 May;106(2):195-205. doi: 10.1007/s00421-009-1007-8. Epub 2009 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验