Díaz-Manríquez Alan, Toscano Gregorio, Barron-Zambrano Jose Hugo, Tello-Leal Edgar
Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, 87000 Victoria, TAMPS, Mexico.
Cinvestav Tamaulipas, Km. 5.5 Carretera Ciudad Victoria-Soto La Marina, 87130 Victoria, TAMPS, Mexico.
Comput Intell Neurosci. 2016;2016:1898527. doi: 10.1155/2016/1898527. Epub 2016 Aug 28.
We propose to couple the 2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the 2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approach is validated using several test problems and performance measures commonly adopted in the specialized literature. Results indicate that the proposed algorithm produces results that are competitive with respect to those obtained by four well-known MOEAs. Additionally, we validate our proposal in many-objective optimization problems. In these problems, our approach showed its main strength, since it could outperform another well-known indicator-based MOEA.
我们建议将这两种性能度量与粒子群优化相结合,以处理多目标/多目标问题。我们的提议表明,通过精心设计的交互过程,我们可以使元启发式算法几乎保持不变,并且通过这两种性能度量,我们既不使用外部存档也不使用帕累托优势来指导搜索。使用专业文献中常用的几个测试问题和性能度量对所提出的方法进行了验证。结果表明,所提出的算法产生的结果与四个著名的多目标进化算法所获得的结果具有竞争力。此外,我们在多目标优化问题中验证了我们的提议。在这些问题中,我们的方法显示了其主要优势,因为它可以优于另一个著名的基于指标的多目标进化算法。