Suppr超能文献

一种基于坐标变换的多目标进化算法。

A Multiobjective Evolutionary Algorithm Based on Coordinate Transformation.

作者信息

Fang Wei, Zhang Lingzhi, Yang Shengxiang, Sun Jun, Wu Xiaojun

出版信息

IEEE Trans Cybern. 2019 Jul;49(7):2732-2743. doi: 10.1109/TCYB.2018.2834363. Epub 2018 May 28.

Abstract

In this paper, a novel multiobjective evolutionary algorithm (MOEA/CT) is proposed to better manage convergence and distribution of solutions when MOEAs are used for solving multiobjective optimization problems. The coordinate transformation strategy, an external archive update strategy, and a diversity maintenance strategy are proposed in MOEA/CT. The coordinate transformation strategy in the objective space is designed to find more efficient solutions that can accelerate the convergence process. Based on the coordinate transformation strategy, a novel update strategy and diversity maintenance approach for selecting nondominated solutions from the external archive set are integrated in MOEA/CT for getting better distribution of the solutions. The proposed MOEA/CT is compared with eight state-of-art algorithms on six biobjective and seven tri-objective test problems. In terms of four performance metrics, the comparative experimental results demonstrate that MOEA/CT outperforms the other eight competitors and it can achieve solutions with better distribution and better convergence to the Pareto front. In addition, parameter sensitivity analysis is provided to investigate the effect of a key parameter in MOEA/CT; the proposed three strategies are also studied individually to investigate their contribution to MOEA/CT; the performance analysis along with the capacity of external archive is given to clearly make the influence in MOEA/CT; finally, the scalability performance of MOEA/CT is investigated and compared with five notable many-objective evolutionary algorithms on the DTLZ and WFG test suites with 5, 8, 10, and 15 objectives.

摘要

本文提出了一种新颖的多目标进化算法(MOEA/CT),以便在使用多目标进化算法解决多目标优化问题时,更好地管理解的收敛性和分布性。MOEA/CT中提出了坐标变换策略、外部存档更新策略和多样性维护策略。目标空间中的坐标变换策略旨在找到能加速收敛过程的更高效解。基于坐标变换策略,MOEA/CT中集成了一种用于从外部存档集中选择非支配解的新颖更新策略和多样性维护方法,以实现解的更好分布。在六个双目标和七个三目标测试问题上,将所提出的MOEA/CT与八种先进算法进行了比较。在四个性能指标方面,对比实验结果表明MOEA/CT优于其他八个竞争对手,并且能够获得具有更好分布性且更接近帕累托前沿的解。此外,还进行了参数敏感性分析,以研究MOEA/CT中一个关键参数的影响;还分别研究了所提出的三种策略,以探究它们对MOEA/CT的贡献;给出了性能分析以及外部存档的容量,以明确其在MOEA/CT中的影响;最后,研究了MOEA/CT的可扩展性性能,并在具有5、8、10和15个目标的DTLZ和WFG测试套件上与五种著名的多目标进化算法进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验