Suppr超能文献

通过空间分析和文本挖掘识别医生执业地点的不确定性。

Identifying the Uncertainty in Physician Practice Location through Spatial Analytics and Text Mining.

作者信息

Shi Xuan, Xue Bowei, Xierali Imam M

机构信息

Department of Geoscience, University of Arkansas, Fayetteville, AR 72701, USA.

Association of American Medical Colleges, Washington, DC 20001, USA.

出版信息

Int J Environ Res Public Health. 2016 Sep 21;13(9):930. doi: 10.3390/ijerph13090930.

Abstract

In response to the widespread concern about the adequacy, distribution, and disparity of access to a health care workforce, the correct identification of physicians' practice locations is critical to access public health services. In prior literature, little effort has been made to detect and resolve the uncertainty about whether the address provided by a physician in the survey is a practice address or a home address. This paper introduces how to identify the uncertainty in a physician's practice location through spatial analytics, text mining, and visual examination. While land use and zoning code, embedded within the parcel datasets, help to differentiate resident areas from other types, spatial analytics may have certain limitations in matching and comparing physician and parcel datasets with different uncertainty issues, which may lead to unforeseen results. Handling and matching the string components between physicians' addresses and the addresses of the parcels could identify the spatial uncertainty and instability to derive a more reasonable relationship between different datasets. Visual analytics and examination further help to clarify the undetectable patterns. This research will have a broader impact over federal and state initiatives and policies to address both insufficiency and maldistribution of a health care workforce to improve the accessibility to public health services.

摘要

鉴于对医疗保健劳动力的充足性、分布情况以及获取机会的差异存在广泛关注,正确识别医生的执业地点对于获取公共卫生服务至关重要。在以往的文献中,几乎没有做出努力来检测和解决医生在调查中提供的地址是执业地址还是家庭地址的不确定性。本文介绍了如何通过空间分析、文本挖掘和视觉检查来识别医生执业地点的不确定性。虽然包裹数据集中嵌入的土地使用和分区代码有助于区分居民区与其他类型区域,但空间分析在匹配和比较存在不同不确定性问题的医生和包裹数据集时可能存在一定局限性,这可能导致意外结果。处理和匹配医生地址与包裹地址之间的字符串组件可以识别空间不确定性和不稳定性,从而在不同数据集之间得出更合理的关系。视觉分析和检查进一步有助于澄清难以察觉的模式。这项研究将对联邦和州解决医疗保健劳动力不足和分布不均以提高公共卫生服务可及性的倡议和政策产生更广泛的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ffe/5036762/6e2255ee7e3a/ijerph-13-00930-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验