Tkachyova Ilona, Fan Xiaolian, LamHonWah Anne-Marie, Fedyshyn Bohdana, Tein Ingrid, Mahuran Don J, Schulze Andreas
Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2016 Sep 22;11(9):e0162145. doi: 10.1371/journal.pone.0162145. eCollection 2016.
The stepwise degradation of glycosaminoglycans (GAGs) is accomplished by twelve lysosomal enzymes. Deficiency in any of these enzymes will result in the accumulation of the intermediate substrates on the pathway to the complete turnover of GAGs. The accumulation of these undegraded substrates in almost any tissue is a hallmark of all Mucopolysaccharidoses (MPS). Present therapeutics based on enzyme replacement therapy and bone marrow transplantation have low effectiveness for the treatment of MPS with neurological complications since enzymes used in these therapies are unable to cross the blood brain barrier. Small molecule-based approaches are more promising in addressing neurological manifestations. In this report we identify a target for developing a substrate reduction therapy (SRT) for six MPS resulting from the abnormal degradation of heparan sulfate (HS). Using the minimal promoter of NDST1, one of the first modifying enzymes of HS precursors, we established a luciferase based reporter gene assay capable of identifying small molecules that could potentially reduce HS maturation and therefore lessen HS accumulation in certain MPS. From the screen of 1,200 compounds comprising the Prestwick Chemical library we identified SAHA, a histone deacetylase inhibitor, as the drug that produced the highest inhibitory effects in the reporter assay. More importantly SAHA treated fibroblasts expressed lower levels of endogenous NDST1 and accumulated less 35S GAGs in patient cells. Thus, by using our simple reporter gene assay we have demonstrated that by inhibiting the transcription of NDST1 with small molecules, identified by high throughput screening, we can also reduce the level of sulfated HS substrate in MPS patient cells, potentially leading to SRT.
糖胺聚糖(GAGs)的逐步降解由十二种溶酶体酶完成。这些酶中任何一种的缺乏都会导致在GAGs完全周转途径中的中间底物积累。这些未降解底物在几乎任何组织中的积累是所有黏多糖贮积症(MPS)的一个标志。目前基于酶替代疗法和骨髓移植的治疗方法对伴有神经并发症的MPS治疗效果不佳,因为这些疗法中使用的酶无法穿过血脑屏障。基于小分子的方法在解决神经表现方面更有前景。在本报告中,我们确定了一个开发底物减少疗法(SRT)的靶点,用于治疗因硫酸乙酰肝素(HS)异常降解导致的六种MPS。使用HS前体的首批修饰酶之一NDST1的最小启动子,我们建立了一种基于荧光素酶的报告基因检测方法,能够识别可能减少HS成熟从而减轻某些MPS中HS积累的小分子。从对包含Prestwick Chemical文库的1200种化合物的筛选中,我们确定了一种组蛋白去乙酰化酶抑制剂SAHA,它在报告基因检测中产生了最高的抑制作用。更重要的是,用SAHA处理的成纤维细胞中内源性NDST1的表达水平较低,并且在患者细胞中积累的35S GAGs较少。因此,通过使用我们简单的报告基因检测方法,我们证明了通过用高通量筛选鉴定的小分子抑制NDST1的转录,我们也可以降低MPS患者细胞中硫酸化HS底物的水平,这可能会导致底物减少疗法。