Suppr超能文献

在线性二次模型中,泊松近似法和扎伊德-米纳博公式在肿瘤控制概率的排序上是一致的,直到临界细胞增殖率。

In the linear quadratic model, the Poisson approximation and the Zaider-Minerbo formula agree on the ranking of tumor control probabilities, up to a critical cell birth rate.

作者信息

Ballhausen Hendrik, Belka Claus

机构信息

a Department of Radiation Oncology , University Hospitals of LMU Munich , Munich , Germany.

出版信息

Int J Radiat Biol. 2017 Mar;93(3):279-285. doi: 10.1080/09553002.2017.1238527. Epub 2016 Nov 11.

Abstract

PURPOSE

To provide a rule for the agreement or disagreement of the Poisson approximation (PA) and the Zaider-Minerbo formula (ZM) on the ranking of treatment alternatives in terms of tumor control probability (TCP) in the linear quadratic model.

MATERIALS AND METHODS

A general criterion involving a critical cell birth rate was formally derived. For demonstration, the criterion was applied to a distinct radiobiological model of fast growing head and neck tumors and a respective range of 22 conventional and nonconventional head and neck schedules.

RESULTS

There is a critical cell birth rate b below which PA and ZM agree on which one out of two alternative treatment schemes with single-cell survival curves S'(t) and S''(t) offers better TCP: [Formula: see text] For cell birth rates b above this critical cell birth rate, PA and ZM disagree if and only if b >b > 0. In case of the exemplary head and neck schedules, out of 231 possible combinations, only 16 or 7% were found where PA and ZM disagreed. In all 231 cases the prediction of the criterion was numerically confirmed, and cell birth rates at crossovers between schedules matched the calculated critical cell birth rates.

CONCLUSIONS

TCP estimated by PA and ZM almost never numerically coincide. Still, in many cases both formulas at least agree about which one out of two alternative fractionation schemes offers better TCP. In case of fast growing tumors featuring a high cell birth rate, however, ZM may suggest a re-evaluation of treatment options.

摘要

目的

提供一种规则,用于判断在直线二次模型中,泊松近似法(PA)和扎伊德 - 米内尔博公式(ZM)在根据肿瘤控制概率(TCP)对治疗方案进行排序方面是否一致。

材料与方法

正式推导了一个涉及临界细胞增殖率的通用标准。为作演示,将该标准应用于一个快速生长的头颈部肿瘤的独特放射生物学模型以及22种传统和非传统头颈部放疗方案的相应范围。

结果

存在一个临界细胞增殖率b,低于该值时,PA和ZM在具有单细胞存活曲线S'(t)和S''(t)的两种替代治疗方案中,哪一种能提供更好的TCP上达成一致:[公式:见原文] 对于高于此临界细胞增殖率的细胞增殖率b,当且仅当b >b > 0时,PA和ZM存在分歧。在示例性的头颈部放疗方案中,在231种可能的组合中,仅发现16种(即7%)情况PA和ZM存在分歧。在所有231个案例中,该标准的预测在数值上得到了证实,并且方案交叉处的细胞增殖率与计算出的临界细胞增殖率相匹配。

结论

PA和ZM估计的TCP在数值上几乎从不一致。不过,在许多情况下,两个公式至少在两种替代分割方案中哪一种能提供更好的TCP上达成一致。然而,对于具有高细胞增殖率的快速生长肿瘤,ZM可能建议重新评估治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验