Kaplan Mohammed, Pinto Cecilia, Houben Klaartje, Baldus Marc
NMR Spectroscopy Research Group,Bijvoet Center for Biomolecular Research, Utrecht University,Utrecht,The Netherlands.
Q Rev Biophys. 2016 Jan;49:e15. doi: 10.1017/S003358351600010X. Epub 2016 Aug 8.
Increasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane-protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein-protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein-ligand and protein-protein interactions that underlie essential biological functions in cellular membranes.
越来越多的证据表明,大多数蛋白质嵌入细胞膜时是以复合物的形式存在并发挥功能,而非孤立的个体。核磁共振(NMR)为研究此类系统的结构、动力学和组装提供了越来越多的可能性。在我们的综述中,我们将讨论通过核磁共振研究膜蛋白复合物(MPCs)的最新方法进展,从表达、同位素标记和重组方案开始。我们回顾了在基于核磁共振的MPCs研究中通常会遇到的处理光谱复杂性和有限光谱灵敏度的方法。我们重点介绍了核磁共振在各类MPCs中的应用,包括G蛋白偶联受体、离子通道和视网膜蛋白,并将讨论扩展到跨越整个细胞区室或协调诸如蛋白质跨膜运输或膜内运输等过程的蛋白质-蛋白质复合物。这些例子表明,基于核磁共振的MPCs研究在深入了解构成细胞膜基本生物学功能基础的蛋白质-配体和蛋白质-蛋白质相互作用的能量学方面的潜力越来越大。