Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607, Hamburg, Germany.
Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 7610001, Rehovot, Israel.
Chembiochem. 2021 Sep 2;22(17):2657-2671. doi: 10.1002/cbic.202100106. Epub 2021 May 21.
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
揭示生物分子的结构和功能是结构生物学的一个基本目标。膜嵌入转运蛋白在所有生命领域中都普遍存在。尽管具有结构灵活性,但它们的机制通常通过整体生化方法或静态高分辨率结构来研究,这使得对其动力学的详细理解变得复杂。在这里,我们回顾了单分子Förster 共振能量转移(smFRET)在确定跨膜底物运输机制和时间尺度方面的最新进展。这些研究不仅证明了最先进的 smFRET 工具在研究膜转运蛋白方面的多功能性和适用性,而且还强调了模拟膜环境在保持这些蛋白质功能方面的重要性。目前的研究进展提高了我们对转运机制的理解,并有可能促进未来药物设计的进展。