Zimmerman Richard K, Balasubramani G K, Nowalk Mary Patricia, Eng Heather, Urbanski Leonard, Jackson Michael L, Jackson Lisa A, McLean Huong Q, Belongia Edward A, Monto Arnold S, Malosh Ryan E, Gaglani Manjusha, Clipper Lydia, Flannery Brendan, Wisniewski Stephen R
University of Pittsburgh, Pittsburgh, PA, USA.
Department of Family Medicine, University of Pittsburgh, 3518 5th Avenue, Pittsburgh, PA, USA.
BMC Infect Dis. 2016 Sep 22;16(1):503. doi: 10.1186/s12879-016-1839-x.
The use of neuraminidase-inhibiting anti-viral medication to treat influenza is relatively infrequent. Rapid, cost-effective methods for diagnosing influenza are needed to enable appropriate prescribing. Multi-viral respiratory panels using reverse transcription polymerase chain reaction (PCR) assays to diagnose influenza are accurate but expensive and more time-consuming than low sensitivity rapid influenza tests. Influenza clinical decision algorithms are both rapid and inexpensive, but most are based on regression analyses that do not account for higher order interactions. This study used classification and regression trees (CART) modeling to estimate probabilities of influenza.
Eligible enrollees ≥ 5 years old (n = 4,173) who presented at ambulatory centers for treatment of acute respiratory illness (≤7 days) with cough or fever in 2011-2012, provided nasal and pharyngeal swabs for PCR testing for influenza, information on demographics, symptoms, personal characteristics and self-reported influenza vaccination status.
Antiviral medication was prescribed for just 15 % of those with PCR-confirmed influenza. An algorithm that included fever, cough, and fatigue had sensitivity of 84 %, specificity of 48 %, positive predictive value (PPV) of 23 % and negative predictive value (NPV) of 94 % for the development sample.
The CART algorithm has good sensitivity and high NPV, but low PPV for identifying influenza among outpatients ≥5 years. Thus, it is good at identifying a group who do not need testing or antivirals and had fair to good predictive performance for influenza. Further testing of the algorithm in other influenza seasons would help to optimize decisions for lab testing or treatment.
使用神经氨酸酶抑制类抗病毒药物治疗流感的情况相对较少。需要快速且具有成本效益的方法来诊断流感,以便进行恰当的处方用药。使用逆转录聚合酶链反应(PCR)检测法的多病毒呼吸道检测板诊断流感准确,但成本高且比低灵敏度的快速流感检测耗时更长。流感临床决策算法既快速又便宜,但大多数基于回归分析,未考虑高阶相互作用。本研究使用分类与回归树(CART)建模来估计流感的概率。
2011 - 2012年,年龄≥5岁(n = 4173)、因急性呼吸道疾病(≤7天)伴咳嗽或发热到门诊中心就诊的符合条件的受试者,提供鼻拭子和咽拭子用于流感的PCR检测,以及人口统计学、症状、个人特征和自我报告的流感疫苗接种状况等信息。
在PCR确诊为流感的患者中,仅15%的患者接受了抗病毒药物治疗。对于开发样本,一个包含发热、咳嗽和疲劳症状的算法的灵敏度为84%,特异度为48%,阳性预测值(PPV)为23%,阴性预测值(NPV)为94%。
CART算法在识别≥5岁门诊患者的流感方面具有良好的灵敏度和高NPV,但PPV较低。因此,它擅长识别不需要检测或抗病毒治疗的人群,对流感具有中等至良好的预测性能。在其他流感季节对该算法进行进一步测试将有助于优化实验室检测或治疗的决策。