Suppr超能文献

用于膀胱癌复发诊断的多平台生物标志物发现

Multiplatform Biomarker Discovery for Bladder Cancer Recurrence Diagnosis.

作者信息

De Paoli Marine, Gogalic Selma, Sauer Ursula, Preininger Claudia, Pandha Hardev, Simpson Guy, Horvath Andras, Marquette Christophe

机构信息

AXO Science SAS, 34 rue du Mail, 69004 Lyon, France.

AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.

出版信息

Dis Markers. 2016;2016:4591910. doi: 10.1155/2016/4591910. Epub 2016 Aug 31.

Abstract

Nonmuscle invasive bladder cancer (BCa) has a high recurrence rate requiring lifelong surveillance. Urinary biomarkers are promising as simple alternatives to cystoscopy for the diagnosis of recurrent bladder cancer. However, no single marker can achieve the required accuracy. The purpose of this study was to select a multiparameter panel, comprising urinary biomarkers and clinical parameters, for BCa recurrence diagnosis. Candidate biomarkers were measured in urine samples of BCa patients with recurrence and BCa patients without recurrence. A multiplatform strategy was used for marker quantification comprising a multiplexed microarray and an automated platform for ELISA analysis. A multivariate statistical analysis combined the results from both platforms with the collected clinical data. The best performing combination of biomarkers and clinical parameters achieved an AUC value of 0.91, showing better performance than individual parameters. This panel comprises six biomarkers (cadherin-1, IL-8, ErbB2, IL-6, EN2, and VEGF-A) and three clinical parameters (number of past recurrences, number of BCG therapies, and stage at time of diagnosis). The multiparameter panel could be a useful noninvasive tool for BCa surveillance and potentially impact the clinical management of this disease. Validation of results in an independent cohort is warranted.

摘要

非肌层浸润性膀胱癌(BCa)复发率高,需要终身监测。尿生物标志物有望成为诊断复发性膀胱癌的简单替代方法,以取代膀胱镜检查。然而,没有单一标志物能达到所需的准确性。本研究的目的是选择一个包含尿生物标志物和临床参数的多参数组合,用于BCa复发诊断。在复发的BCa患者和未复发的BCa患者的尿液样本中测量候选生物标志物。采用多平台策略进行标志物定量,包括多重微阵列和ELISA分析自动化平台。多变量统计分析将两个平台的结果与收集的临床数据相结合。生物标志物和临床参数的最佳组合达到了0.91的AUC值,表现优于单个参数。该组合包括六种生物标志物(钙黏蛋白-1、白细胞介素-8、表皮生长因子受体2、白细胞介素-6、EN2和血管内皮生长因子-A)和三个临床参数(既往复发次数、卡介苗治疗次数和诊断时的分期)。该多参数组合可能是一种有用的无创工具,用于BCa监测,并可能影响该疾病的临床管理。有必要在独立队列中验证结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c5c/5021863/836b289e79cf/DM2016-4591910.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验