Suppr超能文献

在有和没有F-肌动蛋白的情况下原肌球蛋白扭转的倾向。

The propensity for tropomyosin twisting in the presence and absence of F-actin.

作者信息

Rynkiewicz Michael J, Fischer Stefan, Lehman William

机构信息

Department of Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.

Computational Biochemistry Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D69120 Heidelberg, Germany.

出版信息

Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.

Abstract

A canonical model of muscle α-tropomyosin (Tpm1.1), based on molecular-mechanics and electron microscopy of different contractile states, shows that the two-stranded coiled-coiled is pre-bent to present a specific molecular-face to the F-actin filament. This conformation is thought to facilitate both filament assembly and tropomyosin sliding across actin to modulate myosin-binding. However, to bind effectively to actin filaments, the 42 nm-long tropomyosin coiled-coil is not strictly canonical. Here, the mid-region of tropomyosin twists an additional ∼20° in order to better match the F-actin helix. In addition, the N- and C-terminal regions of tropomyosin polymerize head-to-tail to form continuous super-helical cables. In this case, 9 to 10 residue-long overlapping domains between adjacent molecules untwist relative to each other to accommodate orthogonal interactions between chains in the junctional four-helix nexus. Extensive molecular dynamics simulations show that the twisting and untwisting motions of tropomyosin vary appreciably along tropomyosin length, and in particular that substantial terminal domain winding and unwinding occurs whether tropomyosin is bound to F-actin or not. The local and regional twisting and untwisting do not appear to proceed in a concerted fashion, resembling more of a "wringing-type" behavior rather than a rotation.

摘要

基于不同收缩状态的分子力学和电子显微镜技术建立的肌肉α-原肌球蛋白(Tpm1.1)的典型模型表明,双链卷曲螺旋结构预先弯曲,从而向F-肌动蛋白丝呈现特定的分子表面。这种构象被认为既有助于丝的组装,也有助于原肌球蛋白在肌动蛋白上滑动以调节肌球蛋白结合。然而,为了有效地结合到肌动蛋白丝上,42纳米长的原肌球蛋白卷曲螺旋结构并不严格遵循典型结构。在这里,原肌球蛋白的中间区域额外扭转约20°,以便更好地匹配F-肌动蛋白螺旋。此外,原肌球蛋白的N端和C端区域头对头聚合形成连续的超螺旋缆线。在这种情况下,相邻分子之间9到10个残基长的重叠结构域相对于彼此解旋,以适应连接四螺旋连接点中链之间的正交相互作用。广泛的分子动力学模拟表明,原肌球蛋白的扭转和解旋运动沿原肌球蛋白长度有明显变化,特别是无论原肌球蛋白是否与F-肌动蛋白结合,末端结构域都会发生大量的缠绕和解缠绕。局部和区域的扭转和解旋似乎不是协同进行的,更像是一种“拧绞式”行为,而不是旋转。

相似文献

1
The propensity for tropomyosin twisting in the presence and absence of F-actin.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
2
The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules.
Arch Biochem Biophys. 2014 Jun 15;552-553:68-73. doi: 10.1016/j.abb.2013.09.011. Epub 2013 Sep 23.
3
An atomic model of the tropomyosin cable on F-actin.
Biophys J. 2014 Aug 5;107(3):694-699. doi: 10.1016/j.bpj.2014.06.034.
4
Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro.
Curr Biol. 2017 Mar 6;27(5):705-713. doi: 10.1016/j.cub.2017.01.018. Epub 2017 Feb 16.
5
Mechanical properties of tropomyosin and implications for muscle regulation.
Biopolymers. 1996 Jan;38(1):89-95. doi: 10.1002/(SICI)1097-0282(199601)38:1%3C89::AID-BIP7%3E3.0.CO;2-S.
6
Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.
Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.
8
Structure and flexibility of the tropomyosin overlap junction.
Biochem Biophys Res Commun. 2014 Mar 28;446(1):304-8. doi: 10.1016/j.bbrc.2014.02.097. Epub 2014 Mar 4.
9
Cardiomyopathy Mutation Alters End-to-End Junction of Tropomyosin and Reduces Calcium Sensitivity.
Biophys J. 2020 Jan 21;118(2):303-312. doi: 10.1016/j.bpj.2019.11.3396. Epub 2019 Dec 14.
10
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.

引用本文的文献

2
Mutations Q93H and E97K in Disrupt Ca-Dependent Regulation of Actin Filaments.
Int J Mol Sci. 2021 Apr 14;22(8):4036. doi: 10.3390/ijms22084036.
3
Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments.
Biophys J. 2020 Jul 7;119(1):75-86. doi: 10.1016/j.bpj.2020.05.017. Epub 2020 May 22.
4
The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time.
Biophys J. 2019 Jun 18;116(12):2275-2284. doi: 10.1016/j.bpj.2019.05.009. Epub 2019 May 13.
5
Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.
Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.
6
Switching Muscles On and Off in Steps: The McKillop-Geeves Three-State Model of Muscle Regulation.
Biophys J. 2017 Jun 20;112(12):2459-2466. doi: 10.1016/j.bpj.2017.04.053. Epub 2017 May 25.

本文引用的文献

1
Thin Filament Structure and the Steric Blocking Model.
Compr Physiol. 2016 Mar 15;6(2):1043-69. doi: 10.1002/cphy.c150030.
2
Tropomyosin diffusion over actin subunits facilitates thin filament assembly.
Struct Dyn. 2016 Jan 14;3(1):012002. doi: 10.1063/1.4940223. eCollection 2016 Jan.
3
Tropomyosin as a Regulator of Actin Dynamics.
Int Rev Cell Mol Biol. 2015;318:255-91. doi: 10.1016/bs.ircmb.2015.06.002. Epub 2015 Jul 7.
4
Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.
J Muscle Res Cell Motil. 2015 Dec;36(6):525-33. doi: 10.1007/s10974-015-9419-z. Epub 2015 Aug 19.
5
Direct observation of tropomyosin binding to actin filaments.
Cytoskeleton (Hoboken). 2015 Jun;72(6):292-303. doi: 10.1002/cm.21225. Epub 2015 Jun 30.
6
Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin networks.
Curr Biol. 2015 Jun 15;25(12):1573-82. doi: 10.1016/j.cub.2015.04.038. Epub 2015 May 28.
7
Structure of the F-actin-tropomyosin complex.
Nature. 2015 Mar 5;519(7541):114-7. doi: 10.1038/nature14033. Epub 2014 Dec 1.
8
An atomic model of the tropomyosin cable on F-actin.
Biophys J. 2014 Aug 5;107(3):694-699. doi: 10.1016/j.bpj.2014.06.034.
9
Formins determine the functional properties of actin filaments in yeast.
Curr Biol. 2014 Jul 7;24(13):1525-30. doi: 10.1016/j.cub.2014.05.034. Epub 2014 Jun 19.
10
Structure and flexibility of the tropomyosin overlap junction.
Biochem Biophys Res Commun. 2014 Mar 28;446(1):304-8. doi: 10.1016/j.bbrc.2014.02.097. Epub 2014 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验