Rynkiewicz Michael J, Fischer Stefan, Lehman William
Department of Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
Computational Biochemistry Group, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D69120 Heidelberg, Germany.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
A canonical model of muscle α-tropomyosin (Tpm1.1), based on molecular-mechanics and electron microscopy of different contractile states, shows that the two-stranded coiled-coiled is pre-bent to present a specific molecular-face to the F-actin filament. This conformation is thought to facilitate both filament assembly and tropomyosin sliding across actin to modulate myosin-binding. However, to bind effectively to actin filaments, the 42 nm-long tropomyosin coiled-coil is not strictly canonical. Here, the mid-region of tropomyosin twists an additional ∼20° in order to better match the F-actin helix. In addition, the N- and C-terminal regions of tropomyosin polymerize head-to-tail to form continuous super-helical cables. In this case, 9 to 10 residue-long overlapping domains between adjacent molecules untwist relative to each other to accommodate orthogonal interactions between chains in the junctional four-helix nexus. Extensive molecular dynamics simulations show that the twisting and untwisting motions of tropomyosin vary appreciably along tropomyosin length, and in particular that substantial terminal domain winding and unwinding occurs whether tropomyosin is bound to F-actin or not. The local and regional twisting and untwisting do not appear to proceed in a concerted fashion, resembling more of a "wringing-type" behavior rather than a rotation.
基于不同收缩状态的分子力学和电子显微镜技术建立的肌肉α-原肌球蛋白(Tpm1.1)的典型模型表明,双链卷曲螺旋结构预先弯曲,从而向F-肌动蛋白丝呈现特定的分子表面。这种构象被认为既有助于丝的组装,也有助于原肌球蛋白在肌动蛋白上滑动以调节肌球蛋白结合。然而,为了有效地结合到肌动蛋白丝上,42纳米长的原肌球蛋白卷曲螺旋结构并不严格遵循典型结构。在这里,原肌球蛋白的中间区域额外扭转约20°,以便更好地匹配F-肌动蛋白螺旋。此外,原肌球蛋白的N端和C端区域头对头聚合形成连续的超螺旋缆线。在这种情况下,相邻分子之间9到10个残基长的重叠结构域相对于彼此解旋,以适应连接四螺旋连接点中链之间的正交相互作用。广泛的分子动力学模拟表明,原肌球蛋白的扭转和解旋运动沿原肌球蛋白长度有明显变化,特别是无论原肌球蛋白是否与F-肌动蛋白结合,末端结构域都会发生大量的缠绕和解缠绕。局部和区域的扭转和解旋似乎不是协同进行的,更像是一种“拧绞式”行为,而不是旋转。