Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany.
Nature. 2015 Mar 5;519(7541):114-7. doi: 10.1038/nature14033. Epub 2014 Dec 1.
Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs.
丝状肌动蛋白(F-actin)是肌肉细肌丝的主要蛋白质,肌动蛋白微丝是真核细胞骨架的主要组成部分。不同肌动蛋白同工型的突变导致早发性常染色体显性非综合征性听力损失、家族性胸主动脉瘤和夹层以及多种肌病的发生。在横纹肌纤维中,肌球蛋白马达与肌动蛋白丝的结合主要受原肌球蛋白和肌钙蛋白调节。原肌球蛋白还与平滑肌和非肌肉细胞中的 F-actin 结合,并在没有肌钙蛋白的情况下稳定和调节那里的纤维。尽管单体肌动蛋白(G-actin)的晶体结构是可用的,但 F-actin 的高分辨率结构仍然缺失,这阻碍了我们对致病突变如何影响细肌丝和微丝功能的理解。在这里,我们通过电子 cryomicroscopy 报道了与原肌球蛋白复合物的 F-actin 的三维结构,分辨率为 3.7Å,原肌球蛋白的分辨率为 6.5Å。该结构表明 D 环是有序的,并且作为中央区域,用于稳定 F-actin 纤维的疏水和静电相互作用。我们清楚地识别出对应于 ADP 和 Mg(2+)的图谱密度,并解释了可能导致明显致病突变的影响。将 F-actin 与 G-actin 进行比较,揭示了在纤维形成过程中的构象变化,并确定 D 环是其关键介质。我们还证实带负电荷的原肌球蛋白与 F-actin 上的正沟相互作用。将 F-actin-原肌球蛋白中的原肌球蛋白位置与我们之前确定的 F-actin-原肌球蛋白-肌球蛋白结构中的位置进行比较,揭示了肌球蛋白诱导的原肌球蛋白的转变。我们的结果使我们能够理解单个突变在肌动蛋白和原肌球蛋白相关疾病发生中的作用,并将为有针对性地开发药物提供坚实的基础。