Suppr超能文献

微丝结合蛋白肌球蛋白在肌动蛋白上的精确结合涉及卷曲螺旋扭转的序列依赖性变化。

Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.

机构信息

Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.

Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.

出版信息

Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.

Abstract

Often considered an archetypal dimeric coiled coil, tropomyosin nonetheless exhibits distinctive "noncanonical" core residues located at the hydrophobic interface between its component α-helices. Notably, a charged aspartate, D137, takes the place of nonpolar residues otherwise present. Much speculation has been offered to rationalize potential local coiled-coil instability stemming from D137 and its effect on regulatory transitions of tropomyosin over actin filaments. Although experimental approaches such as electron cryomicroscopy reconstruction are optimal for defining average tropomyosin positions on actin filaments, to date, these methods have not captured the dynamics of tropomyosin residues clustered around position 137 or elsewhere. In contrast, computational biochemistry, involving molecular dynamics simulation, is a compelling choice to extend the understanding of local and global tropomyosin behavior on actin filaments at high resolution. Here, we report on molecular dynamics simulation of actin-free and actin-associated tropomyosin, showing noncanonical residue D137 as a locus for tropomyosin twist variation, with marked effects on actin-tropomyosin interactions. We conclude that D137-sponsored coiled-coil twisting is likely to optimize electrostatic side-chain contacts between tropomyosin and actin on the assembled thin filament, while offsetting disparities between tropomyosin pseudorepeat and actin subunit periodicities. We find that D137 has only minor local effects on tropomyosin coiled-coil flexibility, (i.e., on its flexural mobility). Indeed, D137-associated overtwisting may actually augment tropomyosin stiffness on actin filaments. Accordingly, such twisting-induced stiffness of tropomyosin is expected to enhance cooperative regulatory translocation of the tropomyosin cable over actin.

摘要

通常被认为是典型的二聚卷曲螺旋,原肌球蛋白表现出独特的“非典型”核心残基,位于其组成α-螺旋之间的疏水性界面。值得注意的是,带电荷的天冬氨酸 D137 取代了原本存在的非极性残基。人们提出了很多推测来合理化源自 D137 的潜在局部卷曲螺旋不稳定性及其对原肌球蛋白在肌动蛋白丝上的调节转变的影响。尽管电子cryomicroscopy 重建等实验方法是定义肌动蛋白丝上原肌球蛋白平均位置的最佳方法,但迄今为止,这些方法尚未捕获围绕位置 137 或其他位置聚集的原肌球蛋白残基的动力学。相比之下,涉及分子动力学模拟的计算生物化学是扩展对肌动蛋白丝上局部和全局原肌球蛋白行为的高分辨率理解的有力选择。在这里,我们报告了肌动蛋白游离和肌动蛋白结合原肌球蛋白的分子动力学模拟,显示非典型残基 D137 是原肌球蛋白扭曲变化的位置,对肌动蛋白-原肌球蛋白相互作用有明显影响。我们得出结论,D137 赞助的卷曲螺旋扭曲很可能优化组装的薄丝上原肌球蛋白和肌动蛋白之间的静电侧链接触,同时抵消原肌球蛋白假重复和肌动蛋白亚基周期性之间的差异。我们发现 D137 对原肌球蛋白卷曲螺旋灵活性(即弯曲流动性)只有较小的局部影响。事实上,D137 相关的过度扭曲可能会增加原肌球蛋白在肌动蛋白丝上的刚度。因此,原肌球蛋白这种扭曲诱导的刚度预计会增强原肌球蛋白缆绳在肌动蛋白上的协同调节易位。

相似文献

1
Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting.
Biophys J. 2018 Sep 18;115(6):1082-1092. doi: 10.1016/j.bpj.2018.08.017. Epub 2018 Aug 18.
2
The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules.
Arch Biochem Biophys. 2014 Jun 15;552-553:68-73. doi: 10.1016/j.abb.2013.09.011. Epub 2013 Sep 23.
3
A new twist on tropomyosin binding to actin filaments: perspectives on thin filament function, assembly and biomechanics.
J Muscle Res Cell Motil. 2020 Mar;41(1):23-38. doi: 10.1007/s10974-019-09501-5. Epub 2019 Feb 15.
5
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
6
The propensity for tropomyosin twisting in the presence and absence of F-actin.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
7
What makes tropomyosin an actin binding protein? A perspective.
J Struct Biol. 2010 May;170(2):319-24. doi: 10.1016/j.jsb.2009.12.013. Epub 2009 Dec 29.
8
Periodicities designed in the tropomyosin sequence and structure define its functions.
Bioarchitecture. 2013 May-Jun;3(3):51-6. doi: 10.4161/bioa.25616. Epub 2013 Jul 8.
9
Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation.
J Mol Biol. 2006 Nov 17;364(1):80-96. doi: 10.1016/j.jmb.2006.08.033. Epub 2006 Aug 17.
10
Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments.
Biophys J. 2020 Jul 7;119(1):75-86. doi: 10.1016/j.bpj.2020.05.017. Epub 2020 May 22.

引用本文的文献

2
Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization.
J Mol Cell Cardiol. 2024 Mar;188:30-37. doi: 10.1016/j.yjmcc.2024.01.004. Epub 2024 Jan 22.
3
Alternative splicing of a single exon causes a major impact on the affinity of tropomyosin isoforms for actin filaments.
Front Cell Dev Biol. 2023 Sep 7;11:1208913. doi: 10.3389/fcell.2023.1208913. eCollection 2023.
5
Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TPM1 variant S215L.
PNAS Nexus. 2023 Jan 21;2(3):pgad011. doi: 10.1093/pnasnexus/pgad011. eCollection 2023 Mar.
6
De Novo Asp219Val Mutation in Cardiac Tropomyosin Associated with Hypertrophic Cardiomyopathy.
Int J Mol Sci. 2022 Dec 20;24(1):18. doi: 10.3390/ijms24010018.
7
Modeling Human Cardiac Thin Filament Structures.
Front Physiol. 2022 Jun 22;13:932333. doi: 10.3389/fphys.2022.932333. eCollection 2022.
8
The Central Role of the F-Actin Surface in Myosin Force Generation.
Biology (Basel). 2021 Nov 23;10(12):1221. doi: 10.3390/biology10121221.
10
Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function.
Int J Mol Sci. 2020 Nov 18;21(22):8720. doi: 10.3390/ijms21228720.

本文引用的文献

1
Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin As Revealed by All-Atom Steered Molecular Dynamics Simulations.
J Phys Chem Lett. 2018 Jun 21;9(12):3301-3306. doi: 10.1021/acs.jpclett.8b00958. Epub 2018 Jun 5.
2
Functional role of the core gap in the middle part of tropomyosin.
FEBS J. 2018 Mar;285(5):871-886. doi: 10.1111/febs.14369. Epub 2018 Jan 16.
3
Distortion of the Actin A-Triad Results in Contractile Disinhibition and Cardiomyopathy.
Cell Rep. 2017 Sep 12;20(11):2612-2625. doi: 10.1016/j.celrep.2017.08.070.
4
The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin.
Biophys J. 2017 Jan 24;112(2):376-387. doi: 10.1016/j.bpj.2016.12.013.
5
Tropomyosins.
Curr Biol. 2017 Jan 9;27(1):R8-R13. doi: 10.1016/j.cub.2016.11.033.
6
The propensity for tropomyosin twisting in the presence and absence of F-actin.
Arch Biochem Biophys. 2016 Nov 1;609:51-58. doi: 10.1016/j.abb.2016.09.008. Epub 2016 Sep 20.
7
Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.
J Muscle Res Cell Motil. 2016 Oct;37(4-5):131-147. doi: 10.1007/s10974-016-9447-3. Epub 2016 Jul 4.
8
Thin Filament Structure and the Steric Blocking Model.
Compr Physiol. 2016 Mar 15;6(2):1043-69. doi: 10.1002/cphy.c150030.
9
Tropomyosin diffusion over actin subunits facilitates thin filament assembly.
Struct Dyn. 2016 Jan 14;3(1):012002. doi: 10.1063/1.4940223. eCollection 2016 Jan.
10
Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.
J Muscle Res Cell Motil. 2015 Dec;36(6):525-33. doi: 10.1007/s10974-015-9419-z. Epub 2015 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验