Suppr超能文献

杂交水稻表型组、基因组和转录组的综合分析揭示了多个与产量增加相关的杂种优势位点。

Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.

作者信息

Li Dayong, Huang Zhiyuan, Song Shuhui, Xin Yeyun, Mao Donghai, Lv Qiming, Zhou Ming, Tian Dongmei, Tang Mingfeng, Wu Qi, Liu Xue, Chen Tingting, Song Xianwei, Fu Xiqin, Zhao Bingran, Liang Chengzhi, Li Aihong, Liu Guozhen, Li Shigui, Hu Songnian, Cao Xiaofeng, Yu Jun, Yuan Longping, Chen Caiyan, Zhu Lihuang

机构信息

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6026-E6035. doi: 10.1073/pnas.1610115113. Epub 2016 Sep 23.

Abstract

Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world's food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed.

摘要

杂交水稻是中国种植的主要水稻类型,自20世纪70年代以来,其应用已扩展到全球。它具有显著的产量优势,为世界粮食安全做出了巨大贡献。然而,杂种优势背后的分子机制仍是一个谜。在本研究中,我们整合了遗传学和组学分析,以确定两系杂交水稻模式系统两优培九(LYP9)及其亲本中产量杂种优势的候选基因。表型组学研究表明,杂交种产量的较好亲本杂种优势(BPH)并非归因于所有产量构成因素的BPH,而是特定于每穗小穗数(SPP)的BPH和有效穗数(EPN)的父本杂种优势(PPH)。遗传分析随后确定了这两个构成因素的多个数量性状位点(QTL)。此外,通过转录组分析将杂交种中一些差异表达的基因和等位基因定位到QTL区域,作为可能的候选基因。同时,发现一个主要的产量杂种优势QTL,水稻杂种优势8(RH8),是DTH8/Ghd8/LHD1基因。基于许多杂交水稻品种中RH8的共享等位基因杂合性,提出了当前商业杂交水稻产量杂种优势的共同机制。

相似文献

1
Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6026-E6035. doi: 10.1073/pnas.1610115113. Epub 2016 Sep 23.
3
Genomic architecture of heterosis for yield traits in rice.
Nature. 2016 Sep 29;537(7622):629-633. doi: 10.1038/nature19760. Epub 2016 Sep 7.
10
Transcriptome profiling of two super hybrid rice provides insights into the genetic basis of heterosis.
BMC Plant Biol. 2022 Jun 30;22(1):314. doi: 10.1186/s12870-022-03697-4.

引用本文的文献

1
Genetic Mapping of a QTL Controlling Fruit Size in Melon ( L.).
Plants (Basel). 2025 Jul 22;14(15):2254. doi: 10.3390/plants14152254.
3
Molecular and physiological basis of heterosis in hybrid rice performance.
Mol Breed. 2025 May 23;45(6):49. doi: 10.1007/s11032-025-01577-x. eCollection 2025 Jun.
4
Comprehensive Analysis of Variations Using Pan-Genomics and Prime Editing in Rice.
Genes (Basel). 2025 Apr 17;16(4):462. doi: 10.3390/genes16040462.
6
GWAS-based population genetic analysis identifies bZIP29 as a heterotic gene in maize.
Plant Commun. 2025 May 12;6(5):101289. doi: 10.1016/j.xplc.2025.101289. Epub 2025 Feb 20.
7
Multi-environment QTL mapping identifies major genetic loci influencing soybean main stem node architecture.
PeerJ. 2024 Nov 26;12:e18539. doi: 10.7717/peerj.18539. eCollection 2024.
9
Unlocking the mystery of heterosis opens the era of intelligent rice breeding.
Plant Physiol. 2024 Oct 1;196(2):735-744. doi: 10.1093/plphys/kiae385.

本文引用的文献

1
Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice.
Nat Plants. 2015 Dec 21;2:15203. doi: 10.1038/nplants.2015.203.
2
Control of grain size and rice yield by GL2-mediated brassinosteroid responses.
Nat Plants. 2015 Dec 21;2:15195. doi: 10.1038/nplants.2015.195.
3
Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids.
Nat Plants. 2015 Jul 6;1:15092. doi: 10.1038/nplants.2015.92.
4
Heterosis: The genetic basis of hybrid vigour.
Nat Plants. 2015 Mar 3;1:15020. doi: 10.1038/nplants.2015.20.
5
Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits.
Plant Sci. 2016 Apr;245:128-34. doi: 10.1016/j.plantsci.2016.02.002. Epub 2016 Feb 6.
6
A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.
Mol Plant. 2015 Oct 5;8(10):1455-65. doi: 10.1016/j.molp.2015.07.002. Epub 2015 Jul 15.
8
Epigenetic Changes in Hybrids.
Plant Physiol. 2015 Aug;168(4):1197-205. doi: 10.1104/pp.15.00231. Epub 2015 May 22.
10
Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes.
Plant Physiol. 2014 Sep;166(1):265-80. doi: 10.1104/pp.114.243998. Epub 2014 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验