Suppr超能文献

全多孔3D打印钛股骨柄以减少全髋关节置换术后的应力遮挡。

Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.

作者信息

Arabnejad Sajad, Johnston Burnett, Tanzer Michael, Pasini Damiano

机构信息

Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Rm 372, 817 rue Sherbrooke Ouest, Montreal, Quebec, H3A0C3, Canada.

Division of Orthopaedics, Department of Surgery, McGill University, Jo Miller Orthopaedic Research Laboratory, Montreal, Quebec, H3G1A4, Canada.

出版信息

J Orthop Res. 2017 Aug;35(8):1774-1783. doi: 10.1002/jor.23445. Epub 2016 Oct 4.

Abstract

Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017.

摘要

目前的髋关节置换股骨植入物由完全实心的材料制成,这些材料的硬度都大大高于骨骼。这种机械不匹配会导致应力屏蔽继发显著的骨吸收,进而可能引发严重并发症,如翻修手术期间或之后的假体周围骨折。在这项工作中,引入了一种具有可调机械性能的高强度全多孔材料,用于髋关节置换设计。植入物的宏观几何形状基于与微创髋关节置换手术兼容的短柄锥形楔形植入物。植入物的微观结构经过微调,以局部模拟骨组织特性,从而使应力屏蔽继发的骨吸收降至最低。我们提出了一种用于设计3D打印全多孔髋关节植入物的系统方法,该方法涵盖了植入物开发的整个活动范围,从概念产生、多孔材料的多尺度力学、材料结构定制到增材制造,以及通过复合股骨的体外实验进行性能评估。我们表明,与完全实心的植入物相比,具有优化材料微观结构的全多孔植入物可将应力屏蔽继发的骨丢失量减少75%。这一结果也与优化后的全多孔和全实心植入物的体外准生理实验模型及相应有限元模型的结果一致。这些研究证明了调整材料结构以大幅减少应力屏蔽继发骨吸收的优点和潜力。© 2016骨科研究协会。由威利期刊公司出版。《矫形外科学研究》35:1774 - 1783,2017年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验