Suppr超能文献

采用混合量子力学/分子力学方法预测水合自由能:对SAMPL4中隐式和显式溶剂化模型的评估。

Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.

作者信息

König Gerhard, Pickard Frank C, Mei Ye, Brooks Bernard R

机构信息

Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, MD, 20852, USA,

出版信息

J Comput Aided Mol Des. 2014 Mar;28(3):245-57. doi: 10.1007/s10822-014-9708-4. Epub 2014 Feb 7.

Abstract

The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.

摘要

溶质 - 水相互作用的正确表示对于准确模拟大多数生物现象至关重要。有几种高精度量子方法可用于通过使用隐式和显式溶剂来处理溶剂化问题。然而,到目前为止,这些方法的大多数评估都是基于单一构象,这忽略了溶质熵。在这里,我们展示了一种新方法的首次测试,该方法使用分子力学(MM)来采样相空间,并使用量子力学(QM)来评估势能,以确定水合自由能。自由能通过使用非玻尔兹曼贝内特(NBB)方法进行重新加权来确定。在这种情况下,该方法被称为QM - NBB。基于MM采样的快照并考虑其正确的玻尔兹曼权重,可以获得包含溶质熵效应的水合自由能。我们评估了几种QM隐式溶剂模型以及显式溶剂QM/MM在SAMPL4水合自由能挑战的盲测子集中的性能。虽然分子动力学的经典自由能模拟给出的均方根偏差(RMSD)为2.8和2.3 kcal/mol,但混合方法的RMSD有所改善,为1.6 kcal/mol。通过选择合适的泛函和基组,基于单一构象的计算的RMSD可以降低到1 kcal/mol。一组选定的具有挑战性分子的结果表明,通过使用NBB对具有SMD隐式溶剂模型的MM轨迹进行重新加权,可以进一步降低该RMSD。

相似文献

1
Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
J Comput Aided Mol Des. 2014 Mar;28(3):245-57. doi: 10.1007/s10822-014-9708-4. Epub 2014 Feb 7.
2
Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
J Chem Theory Comput. 2016 Jan 12;12(1):332-44. doi: 10.1021/acs.jctc.5b00874. Epub 2015 Dec 11.
3
4
Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
J Chem Theory Comput. 2016 Apr 12;12(4):1466-80. doi: 10.1021/acs.jctc.5b01188. Epub 2016 Mar 23.
5
Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK corrections.
J Comput Aided Mol Des. 2016 Nov;30(11):1087-1100. doi: 10.1007/s10822-016-9955-7. Epub 2016 Sep 19.
6
Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
J Comput Aided Mol Des. 2014 Mar;28(3):299-304. doi: 10.1007/s10822-014-9730-6. Epub 2014 Mar 13.
7
Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Mar;28(3):211-9. doi: 10.1007/s10822-014-9725-3. Epub 2014 Feb 19.
10
Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
J Chem Theory Comput. 2016 Feb 9;12(2):499-511. doi: 10.1021/acs.jctc.5b00920. Epub 2016 Jan 12.

引用本文的文献

1
Enhancing Accuracy and Feature Insights in Hydration Free Energy Predictions for Small Molecules with Machine Learning.
ACS Omega. 2025 Jul 2;10(27):29781-29792. doi: 10.1021/acsomega.5c04249. eCollection 2025 Jul 15.
3
Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2113632118.
4
MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning.
J Cheminform. 2021 Jul 31;13(1):56. doi: 10.1186/s13321-021-00533-z.
5
SAMPL7 blind challenge: quantum-mechanical prediction of partition coefficients and acid dissociation constants for small drug-like molecules.
J Comput Aided Mol Des. 2021 Jul;35(7):841-851. doi: 10.1007/s10822-021-00402-9. Epub 2021 Jun 24.
6
On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces.
Interface Focus. 2020 Dec 6;10(6):20190121. doi: 10.1098/rsfs.2019.0121. Epub 2020 Oct 16.
7
Scalable Indirect Free Energy Method Applied to Divalent Cation-Metalloprotein Binding.
J Chem Theory Comput. 2019 Aug 13;15(8):4602-4614. doi: 10.1021/acs.jctc.9b00147. Epub 2019 Jul 3.
8
Use of Interaction Energies in QM/MM Free Energy Simulations.
J Chem Theory Comput. 2019 Aug 13;15(8):4632-4645. doi: 10.1021/acs.jctc.9b00084. Epub 2019 Jul 2.
9
Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures.
Nat Rev Chem. 2018 Apr;2(4). doi: 10.1038/s41570-018-0148. Epub 2018 Apr 11.
10
DG-GL: Differential geometry-based geometric learning of molecular datasets.
Int J Numer Method Biomed Eng. 2019 Mar;35(3):e3179. doi: 10.1002/cnm.3179. Epub 2019 Feb 7.

本文引用的文献

2
Practically Efficient QM/MM Alchemical Free Energy Simulations: The Orthogonal Space Random Walk Strategy.
J Chem Theory Comput. 2010 Aug 10;6(8):2253-66. doi: 10.1021/ct100033s.
4
SAMPL4, a blind challenge for computational solvation free energies: the compounds considered.
J Comput Aided Mol Des. 2014 Mar;28(3):151-68. doi: 10.1007/s10822-014-9738-y. Epub 2014 Apr 6.
5
Blind prediction of solvation free energies from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Mar;28(3):135-50. doi: 10.1007/s10822-014-9718-2. Epub 2014 Mar 11.
8
Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges.
J Chem Inf Model. 2012 Dec 21;52(12):3155-68. doi: 10.1021/ci3003649. Epub 2012 Nov 28.
9
Partial atomic charges and their impact on the free energy of solvation.
J Comput Chem. 2013 Jan 30;34(3):187-97. doi: 10.1002/jcc.23117. Epub 2012 Sep 20.
10
Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations.
Phys Chem Chem Phys. 2012 Sep 28;14(36):12592-604. doi: 10.1039/c2cp41005b. Epub 2012 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验