Suppr超能文献

基于机器学习、规则和药效团的P-糖蛋白及NorA抑制作用分类

Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

作者信息

Ngo T-D, Tran T-D, Le M-T, Thai K-M

机构信息

a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam.

出版信息

SAR QSAR Environ Res. 2016 Sep;27(9):747-80. doi: 10.1080/1062936X.2016.1233137.

Abstract

The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.

摘要

人类中的外排泵P-糖蛋白(P-gp)和金黄色葡萄球菌中的NorA对药物化学家来说具有极大的吸引力,因为它们在多药耐药性(MDR)中发挥着重要作用。这些跨膜蛋白的高多特异性以及缺乏高分辨率的X射线晶体结构,促使我们结合基于配体的方法,在本研究中这些方法包括机器学习、感知映射和药效团建模。对于P-gp抑制活性,使用不同的机器学习算法开发了个体模型,随后将其组合成一个集成模型,该模型在抑制剂和非抑制剂之间表现出良好的区分能力(训练集多样 = 84%;内部测试集 = 92%,外部测试集 = 100%)。对于P-gp和NorA之间的配体混杂性,生成了感知图和药效团模型以检测规则和特征。基于这些计算机工具,通过虚拟筛选从内部数据库和DrugBank数据库中发现了用于逆转MDR的先导化合物,试图恢复癌细胞和细菌中的药物敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验