Suppr超能文献

用于药物安全相关分类任务的机器学习模型。

Machine learning models for classification tasks related to drug safety.

机构信息

Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.

Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.

出版信息

Mol Divers. 2021 Aug;25(3):1409-1424. doi: 10.1007/s11030-021-10239-x. Epub 2021 Jun 10.

Abstract

In this review, we outline the current trends in the field of machine learning-driven classification studies related to ADME (absorption, distribution, metabolism and excretion) and toxicity endpoints from the past six years (2015-2021). The study focuses only on classification models with large datasets (i.e. more than a thousand compounds). A comprehensive literature search and meta-analysis was carried out for nine different targets: hERG-mediated cardiotoxicity, blood-brain barrier penetration, permeability glycoprotein (P-gp) substrate/inhibitor, cytochrome P450 enzyme family, acute oral toxicity, mutagenicity, carcinogenicity, respiratory toxicity and irritation/corrosion. The comparison of the best classification models was targeted to reveal the differences between machine learning algorithms and modeling types, endpoint-specific performances, dataset sizes and the different validation protocols. Based on the evaluation of the data, we can say that tree-based algorithms are (still) dominating the field, with consensus modeling being an increasing trend in drug safety predictions. Although one can already find classification models with great performances to hERG-mediated cardiotoxicity and the isoenzymes of the cytochrome P450 enzyme family, these targets are still central to ADMET-related research efforts.

摘要

在这篇综述中,我们概述了过去六年(2015-2021 年)中机器学习驱动的 ADME(吸收、分布、代谢和排泄)和毒性终点分类研究领域的当前趋势。该研究仅关注具有大数据集(即超过一千种化合物)的分类模型。针对九个不同的靶标(hERG 介导的心脏毒性、血脑屏障穿透性、渗透糖蛋白(P-gp)底物/抑制剂、细胞色素 P450 酶家族、急性口服毒性、致突变性、致癌性、呼吸毒性和刺激性/腐蚀性)进行了全面的文献检索和荟萃分析。针对最佳分类模型的比较旨在揭示机器学习算法和建模类型之间的差异、特定终点的性能、数据集大小以及不同的验证方案。基于对数据的评估,可以说基于树的算法仍然占据主导地位,共识建模是药物安全性预测中日益增长的趋势。尽管已经可以找到针对 hERG 介导的心脏毒性和细胞色素 P450 酶家族同工酶的具有优异性能的分类模型,但这些靶标仍然是 ADMET 相关研究的核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efd8/8342376/37ffb6180507/11030_2021_10239_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验