Suppr超能文献

细菌脂肪酸代谢与现代抗生素发现。

Bacterial fatty acid metabolism in modern antibiotic discovery.

机构信息

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1300-1309. doi: 10.1016/j.bbalip.2016.09.014. Epub 2016 Sep 23.

Abstract

Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.

摘要

细菌脂肪酸合成对于许多病原体至关重要,与哺乳动物的脂肪酸合成不同。这些特征使得细菌脂肪酸合成成为抗生素发现的理想靶点。保守酶的结构差异以及在途径中催化相同反应的不同同工酶的存在,使得细菌脂肪酸合成成为一种窄谱靶点,而不是传统的广谱靶点。此外,细菌脂肪酸合成抑制剂是针对单一靶点的,而不是像传统的单药、广谱抗生素那样针对多个靶点。细菌脂肪酸合成抑制剂的单一靶向性质使得克服快速发展的基于靶点的耐药性成为抗生素开发的必要考虑因素。基于靶点的耐药性可以通过多靶点抑制剂、单一靶点抑制剂的混合物、或者通过使单一靶向抑制剂通过病原体选择性方法具有足够高的亲和力来克服,使得基于靶点的突变体仍然对治疗浓度的药物敏感。许多需要新抗生素治疗选择的病原体编码必需的细菌脂肪酸合成酶。这篇综述将评估细菌脂肪酸代谢中最有前途的抗生素治疗靶点,并回顾将这些靶点推进临床应用和克服基于靶点的耐药性的潜力和挑战。本文是由 Russell E. Bishop 编辑的题为“细菌脂质”的特刊的一部分。

相似文献

1
Bacterial fatty acid metabolism in modern antibiotic discovery.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1300-1309. doi: 10.1016/j.bbalip.2016.09.014. Epub 2016 Sep 23.
2
Structure, inhibition, and regulation of essential lipid A enzymes.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1424-1438. doi: 10.1016/j.bbalip.2016.11.014. Epub 2016 Dec 9.
3
Targeting the Bacterial Transglycosylase: Antibiotic Development from a Structural Perspective.
ACS Infect Dis. 2019 Sep 13;5(9):1493-1504. doi: 10.1021/acsinfecdis.9b00118. Epub 2019 Jul 8.
5
Molecules that Inhibit Bacterial Resistance Enzymes.
Molecules. 2018 Dec 22;24(1):43. doi: 10.3390/molecules24010043.
6
Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery.
Annu Rev Microbiol. 2001;55:305-32. doi: 10.1146/annurev.micro.55.1.305.
8
Antibacterial targets in fatty acid biosynthesis.
Curr Opin Microbiol. 2007 Oct;10(5):447-53. doi: 10.1016/j.mib.2007.07.001. Epub 2007 Aug 17.
10
UDP-N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments.
Appl Microbiol Biotechnol. 2011 Oct;92(2):211-25. doi: 10.1007/s00253-011-3512-z. Epub 2011 Aug 7.

引用本文的文献

1
Not too rigid nor too wobbly: Defining an optimal membrane fluidity range essential for biofilm formation in .
mLife. 2025 Aug 4;4(4):461-464. doi: 10.1002/mlf2.70024. eCollection 2025 Aug.
3
Vibrio cholerae can Recycle Fatty Acids Via an Acyl-Acyl Carrier Protein Synthetase.
Curr Microbiol. 2025 Jun 30;82(8):352. doi: 10.1007/s00284-025-04332-9.
4
Current Trends in Antibiotic Therapy and Resistance: A Comparative Study of Various Spectrums.
Cureus. 2025 Apr 9;17(4):e81956. doi: 10.7759/cureus.81956. eCollection 2025 Apr.
6
Functional disparities of malonyl-ACP decarboxylase between and .
Appl Environ Microbiol. 2025 May 21;91(5):e0243624. doi: 10.1128/aem.02436-24. Epub 2025 Apr 8.
7
Global health perspectives on antibacterial drug discovery and the preclinical pipeline.
Nat Rev Microbiol. 2025 Mar 27. doi: 10.1038/s41579-025-01167-w.
8
SCO6564, a novel 3-ketoacyl acyl carrier protein synthase III, contributes in fatty acid synthesis in Streptomyces coelicolor.
PLoS One. 2025 Feb 6;20(2):e0318258. doi: 10.1371/journal.pone.0318258. eCollection 2025.
9
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202414325. doi: 10.1002/anie.202414325. Epub 2025 Feb 10.
10
Structure features of FabG and virtual screening of allosteric inhibitors.
Front Mol Biosci. 2024 Sep 27;11:1472252. doi: 10.3389/fmolb.2024.1472252. eCollection 2024.

本文引用的文献

1
Antibacterial FabH Inhibitors with Mode of Action Validated in Haemophilus influenzae by in Vitro Resistance Mutation Mapping.
ACS Infect Dis. 2016 Jul 8;2(7):456-64. doi: 10.1021/acsinfecdis.6b00053. Epub 2016 May 9.
2
Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in Vivo Activity.
J Med Chem. 2016 Jun 9;59(11):5377-90. doi: 10.1021/acs.jmedchem.6b00236. Epub 2016 May 24.
3
A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4264-73. doi: 10.1128/AAC.00535-16. Print 2016 Jul.
4
Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics.
Cold Spring Harb Perspect Med. 2016 Mar 1;6(3):a027045. doi: 10.1101/cshperspect.a027045.
5
Antibacterial drug discovery in the resistance era.
Nature. 2016 Jan 21;529(7586):336-43. doi: 10.1038/nature17042.
6
Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.
J Biol Chem. 2016 Jan 1;291(1):171-81. doi: 10.1074/jbc.M115.699462. Epub 2015 Nov 13.
7
The β-Lactams Strike Back: Ceftazidime-Avibactam.
Pharmacotherapy. 2015 Aug;35(8):755-70. doi: 10.1002/phar.1622.
8
Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.
J Biol Chem. 2015 Jul 31;290(31):18874-88. doi: 10.1074/jbc.M115.657148. Epub 2015 May 20.
9
Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4110-5. doi: 10.1073/pnas.1419677112. Epub 2015 Mar 16.
10
How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics.
J Biol Chem. 2015 Mar 6;290(10):5940-6. doi: 10.1074/jbc.R114.636241. Epub 2015 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验