Suppr超能文献

超网络中超边基数的演变与玻色-爱因斯坦凝聚

The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.

作者信息

Guo Jin-Li, Suo Qi, Shen Ai-Zhong, Forrest Jeffrey

机构信息

Business School, University of Shanghai for Science and Technology, Shanghai 200093, PR China.

School of Business, Slippery Rock University, Slippery Rock, PA 16057, USA.

出版信息

Sci Rep. 2016 Sep 27;6:33651. doi: 10.1038/srep33651.

Abstract

To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.

摘要

为了描述节点之间的复杂关系以及复杂系统的演化过程,本文提出了一种玻色 - 爱因斯坦超网络。基于增长和偏好跳跃这两种基本演化机制,研究了超边基数的分布。利用泊松过程理论描述新节点批次的到达过程。并且,通过使用泊松过程理论和一种连续性技术,对超网络进行分析并得到超边基数的特征方程。此外,利用该特征方程推导了平稳平均超边基数分布的解析表达式,由此得到超网络中的玻色 - 爱因斯坦凝聚。本文的理论分析与所进行的数值模拟结果相符。这是首次关于超网络中超边基数的研究,其中玻色 - 爱因斯坦凝聚可被视为超网络的一种特殊情况。此外,还讨论了一种可用于对玻色 - 爱因斯坦凝聚进行分类的凝聚度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验