Hetti Mimi, Wei Qiang, Pohl Rainer, Casperson Ralf, Bartusch Matthias, Neu Volker, Pospiech Doris, Voit Brigitte
Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany.
Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany.
ACS Appl Mater Interfaces. 2016 Oct 19;8(41):28208-28215. doi: 10.1021/acsami.6b09934. Epub 2016 Oct 4.
Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified FeO NPs. These FeO-PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core FeO of the FeO-PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of FeO-PGMA NPs (1 wt %). The incorporation of FeO-PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.
聚合物材料中的无损探伤很重要,但难以实现。据我们所知,本研究首次对磁铁矿纳米颗粒(MNPs)在无损探伤中的应用进行了研究并得以实现。通过将溴端基功能化的聚甲基丙烯酸缩水甘油酯(Br-PGMA)接枝到表面改性的FeO纳米颗粒上,制备出超顺磁性且高磁性(高达63 emu/g)的磁铁矿核壳纳米颗粒。将这些FeO-PGMA纳米颗粒混入双酚A二缩水甘油醚(BADGE)基环氧树脂中,固化后形成均匀分布的磁性环氧纳米复合材料(MENCs)。FeO-PGMA纳米颗粒的核心FeO赋予MENCs磁性,这对材料的无损探伤至关重要,而外壳PGMA则提高了胶体稳定性,并防止纳米颗粒在固化过程中聚集。首次应用涡流检测(ET)技术来检测MENCs中的缺陷。通过ET图像的亮度对比,即使是FeO-PGMA纳米颗粒含量低(1 wt%)的MENCs,其表面和亚表面缺陷也能被检测到。FeO-PGMA纳米颗粒的掺入可以很容易地扩展到其他聚合物和聚合物基复合材料体系,并为基于MNP的聚合物材料无损探伤开辟了一条新的、非常有前景的途径。