Klotz Luisa, Kuzmanov Ivan, Hucke Stephanie, Gross Catharina C, Posevitz Vilmos, Dreykluft Angela, Schulte-Mecklenbeck Andreas, Janoschka Claudia, Lindner Maren, Herold Martin, Schwab Nicholas, Ludwig-Portugall Isis, Kurts Christian, Meuth Sven G, Kuhlmann Tanja, Wiendl Heinz
Department of Neurology, University Hospital Münster, 48149 Muenster, Germany.
Department of Neurology, University Hospital Würzburg, 97080 Wuerzburg, Germany.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6182-E6191. doi: 10.1073/pnas.1601350113. Epub 2016 Sep 26.
Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood-brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4 T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity.
决定多发性硬化症病变定位或表型变异的分子机制大多尚不明确。尽管活化的致脑炎性T细胞穿越血脑屏障(BBB)是中枢神经系统自身免疫性疾病发病机制中的关键步骤,但与这些T细胞相互作用后对脑内皮屏障完整性的影响以及随后的病变形成和分布情况在很大程度上仍不清楚。我们利用了一种中枢神经系统自身免疫性疾病的转基因自发小鼠模型,其特征为炎性脱髓鞘病变局限于视神经和脊髓(OSE小鼠)。在该模型中对单个免疫调节分子[即B7同源物1(B7-H1,程序性死亡受体配体1)]进行基因敲除,不仅显著增加了自发中枢神经系统自身免疫性疾病的发病率并加重了病程,尤其是在疾病后期,而且重要的是还导致了致脑炎性T细胞浸润以及在正常情况下未受影响的脑区(如大脑和小脑)形成病变。有趣的是,在髓鞘少突胶质细胞糖蛋白特异性CD4 T细胞上而非抗原呈递细胞上敲除B7-H1,增强了T细胞效应功能,如产生γ干扰素和颗粒酶B。因此,在血脑屏障的体外模型中,这些T细胞更有能力引发细胞接触依赖性脑内皮细胞功能障碍并增加屏障通透性。我们的研究结果表明,T细胞上的单个免疫调节分子最终可能导致局部血脑屏障破坏,从而在中枢神经系统自身免疫性疾病的背景下使病变 topography 发生实质性变化。 (注:原文中“topography”可能有误,推测可能是“topology”,译为“拓扑结构”,这里暂按原文翻译为“地形”,因不清楚确切含义)