Suppr超能文献

一个塑性营养生长阈值决定了构巢曲霉的繁殖能力。

A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans.

作者信息

Noble Luke M, Holland Linda M, McLauchlan Alisha J, Andrianopoulos Alex

机构信息

Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10012.

School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, D04, Ireland.

出版信息

Genetics. 2016 Nov;204(3):1161-1175. doi: 10.1534/genetics.116.191122. Epub 2016 Sep 26.

Abstract

Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.

摘要

将生长与繁殖区分开来的个体发育阶段是细胞生命的一个共同特征。开花植物和动物早就认识到这一点,早期文献表明,这种生活史组成部分在多细胞真菌中可能也很普遍。我们在丝状腐生菌构巢曲霉中建立了发育能力的基础——即对无性发育诱导作出反应的能力,描述了环境影响,包括早熟突变体中基因型与环境的相互作用、与野生型和早熟能力获得相关的基因表达,以及能力时间的遗传学。环境效应与由代谢率和生物体密度驱动的阈值一致,pH值在决定能力时间方面起着特别重要的作用。尽管缺乏明显的形态变化,但在能力窗口期基因表达有显著差异,关键的代谢、信号传导和细胞运输过程发生了分化。我们鉴定出五个基因,其突变等位基因会提前能力时间,包括保守的GTP酶RasB(AN5832)和环境pH传感器PalH(AN6886)。在所有研究的案例中,能力时间的遗传是复杂的且不符合孟德尔遗传规律,F子代显示出高度可变的超亲时间以及显性亲本效应,子代基因型的贡献较弱。能力为营养受限的生命周期阶段及其从单细胞起源的演变提供了一个新模型。需要进一步开展工作来确立真菌中该性状的激素和生物能量基础,以及可变遗传的潜在机制。

相似文献

1
A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans.
Genetics. 2016 Nov;204(3):1161-1175. doi: 10.1534/genetics.116.191122. Epub 2016 Sep 26.
4
Genetic requirements for initiating asexual development in Aspergillus nidulans.
Curr Genet. 1994 Dec;27(1):62-9. doi: 10.1007/BF00326580.
5
Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans.
Genetics. 2011 Nov;189(3):795-808. doi: 10.1534/genetics.111.131458. Epub 2011 Aug 25.
6
Involvement of an SRF-MADS protein McmA in regulation of extracellular enzyme production and asexual/sexual development in Aspergillus nidulans.
Biosci Biotechnol Biochem. 2016 Sep;80(9):1820-8. doi: 10.1080/09168451.2016.1146074. Epub 2016 Mar 11.
7
The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus.
Eukaryot Cell. 2012 Nov;11(11):1399-412. doi: 10.1128/EC.00255-12. Epub 2012 Sep 21.
8
Negative regulation and developmental competence in Aspergillus.
Sci Rep. 2016 Jul 1;6:28874. doi: 10.1038/srep28874.
9
Reproductive competence: a recurrent logic module in eukaryotic development.
Proc Biol Sci. 2013 Jul 17;280(1766):20130819. doi: 10.1098/rspb.2013.0819. Print 2013 Sep 7.
10
Parasexuality in asexual development mutants of Aspergillus nidulans.
Biol Res. 2006;39(2):297-305. doi: 10.4067/s0716-97602006000200012. Epub 2006 Jul 25.

本文引用的文献

1
THE EVOLUTION OF COMPLEX LIFE CYCLE PHENOMENA: AN ECOLOGICAL PERSPECTIVE.
Evolution. 1967 Sep;21(3):592-605. doi: 10.1111/j.1558-5646.1967.tb03414.x.
2
Energetic Constraints on Fungal Growth.
Am Nat. 2016 Feb;187(2):E27-40. doi: 10.1086/684392. Epub 2015 Dec 30.
3
Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells.
Mol Microbiol. 2015 Nov;98(4):607-24. doi: 10.1111/mmi.13156. Epub 2015 Sep 4.
4
Antifungal drug resistance evoked via RNAi-dependent epimutations.
Nature. 2014 Sep 25;513(7519):555-8. doi: 10.1038/nature13575. Epub 2014 Jul 27.
5
Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity.
Mol Cell. 2014 Aug 7;55(3):409-21. doi: 10.1016/j.molcel.2014.06.002. Epub 2014 Jul 4.
6
Molecular Genetics of Emericella nidulans Sexual Development.
Mycobiology. 2009 Sep;37(3):171-82. doi: 10.4489/MYCO.2009.37.3.171. Epub 2009 Sep 30.
7
Reproductive competence: a recurrent logic module in eukaryotic development.
Proc Biol Sci. 2013 Jul 17;280(1766):20130819. doi: 10.1098/rspb.2013.0819. Print 2013 Sep 7.
8
Metabolism in physiological cell proliferation and differentiation.
Trends Cell Biol. 2013 Oct;23(10):484-92. doi: 10.1016/j.tcb.2013.05.004. Epub 2013 Jun 4.
9
CSN- and CAND1-dependent remodelling of the budding yeast SCF complex.
Nat Commun. 2013;4:1641. doi: 10.1038/ncomms2628.
10
Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles.
Stud Mycol. 2013 Mar 15;74(1):59-70. doi: 10.3114/sim0009. Epub 2012 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验