Noble Luke M, Holland Linda M, McLauchlan Alisha J, Andrianopoulos Alex
Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10012.
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, D04, Ireland.
Genetics. 2016 Nov;204(3):1161-1175. doi: 10.1534/genetics.116.191122. Epub 2016 Sep 26.
Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.
将生长与繁殖区分开来的个体发育阶段是细胞生命的一个共同特征。开花植物和动物早就认识到这一点,早期文献表明,这种生活史组成部分在多细胞真菌中可能也很普遍。我们在丝状腐生菌构巢曲霉中建立了发育能力的基础——即对无性发育诱导作出反应的能力,描述了环境影响,包括早熟突变体中基因型与环境的相互作用、与野生型和早熟能力获得相关的基因表达,以及能力时间的遗传学。环境效应与由代谢率和生物体密度驱动的阈值一致,pH值在决定能力时间方面起着特别重要的作用。尽管缺乏明显的形态变化,但在能力窗口期基因表达有显著差异,关键的代谢、信号传导和细胞运输过程发生了分化。我们鉴定出五个基因,其突变等位基因会提前能力时间,包括保守的GTP酶RasB(AN5832)和环境pH传感器PalH(AN6886)。在所有研究的案例中,能力时间的遗传是复杂的且不符合孟德尔遗传规律,F子代显示出高度可变的超亲时间以及显性亲本效应,子代基因型的贡献较弱。能力为营养受限的生命周期阶段及其从单细胞起源的演变提供了一个新模型。需要进一步开展工作来确立真菌中该性状的激素和生物能量基础,以及可变遗传的潜在机制。