Suppr超能文献

秀丽隐杆线虫EMS细胞中的有丝分裂纺锤体定位需要LET-99和LIN-5/NuMA。

Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA.

作者信息

Liro Małgorzata J, Rose Lesilee S

机构信息

Department of Molecular and Cellular Biology, University of California Davis, California 95616.

Department of Molecular and Cellular Biology, University of California Davis, California 95616

出版信息

Genetics. 2016 Nov;204(3):1177-1189. doi: 10.1534/genetics.116.192831. Epub 2016 Sep 26.

Abstract

Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism.

摘要

不对称分裂产生具有不同命运的子细胞,因此对动物发育至关重要。在不对称分裂过程中,有丝分裂纺锤体必须定位在极化轴上,以确保细胞命运决定因子向子细胞的差异性分离。在许多细胞类型中,一种由Gα、GPR-1/2和LIN-5组成的皮质定位复合物(Gαi/Pins/Mud,Gαi/LGN/NuMA)介导动力蛋白激活蛋白/动力蛋白的募集,其对星状微管施加拉力以物理定位纺锤体。已知保守的PAR极性蛋白在许多情况下调节细胞质不对称性和纺锤体定位。然而,纺锤体定位也会响应似乎与PAR无关的细胞信号线索而发生。在四细胞期秀丽隐杆线虫胚胎中,Wnt和Mes-1/Src-1信号通路部分冗余地作用,以使纺锤体在内胚层中胚层(EMS)前体细胞的前后轴上对齐。尚不清楚这些外在信号如何分别促成纺锤体定位,以及是否有任何一条通路通过保守的纺锤体定位调节因子起作用。在这里,我们通过遗传学方法测试Gα、LIN-5及其负调节因子LET-99在转导EMS纺锤体定位极性线索中的作用。我们还研究了另一种纺锤体定位调节因子DLG-1的秀丽隐杆线虫直系同源物是否是必需的。我们表明LET-99在Mes-1/Src-1通路中参与纺锤体定位。LIN-5对于EMS纺锤体定位也是必需的,可能通过一种不依赖Gα和DLG-1的机制。

相似文献

1
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA.
Genetics. 2016 Nov;204(3):1177-1189. doi: 10.1534/genetics.116.192831. Epub 2016 Sep 26.
3
Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans.
PLoS Genet. 2016 Oct 6;12(10):e1006291. doi: 10.1371/journal.pgen.1006291. eCollection 2016 Oct.
7
Optogenetic dissection of mitotic spindle positioning in vivo.
Elife. 2018 Aug 15;7:e38198. doi: 10.7554/eLife.38198.
8
Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.
Development. 2011 Oct;138(20):4411-22. doi: 10.1242/dev.070979. Epub 2011 Sep 8.
9
Two populations of cytoplasmic dynein contribute to spindle positioning in embryos.
J Cell Biol. 2017 Sep 4;216(9):2777-2793. doi: 10.1083/jcb.201607038. Epub 2017 Jul 24.
10
Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo.
Curr Biol. 2003 Jun 17;13(12):1029-37. doi: 10.1016/s0960-9822(03)00371-3.

引用本文的文献

2
NMY-2, TOE-2 and PIG-1 regulate Caenorhabditis elegans asymmetric cell divisions.
PLoS One. 2024 May 24;19(5):e0304064. doi: 10.1371/journal.pone.0304064. eCollection 2024.
4
Apical PAR protein caps orient the mitotic spindle in C. elegans early embryos.
Curr Biol. 2023 Oct 23;33(20):4312-4329.e6. doi: 10.1016/j.cub.2023.08.069. Epub 2023 Sep 19.
5
Apical PAR-3 caps orient the mitotic spindle in early embryos.
bioRxiv. 2023 Mar 27:2023.03.27.534341. doi: 10.1101/2023.03.27.534341.
7
Orientation of the Mitotic Spindle in Blood Vessel Development.
Front Cell Dev Biol. 2020 Sep 17;8:583325. doi: 10.3389/fcell.2020.583325. eCollection 2020.
9
Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells.
Biomolecules. 2019 Feb 25;9(2):80. doi: 10.3390/biom9020080.
10
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity.
J Dev Biol. 2018 Nov 25;6(4):28. doi: 10.3390/jdb6040028.

本文引用的文献

1
The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.
Dev Biol. 2016 Apr 15;412(2):288-297. doi: 10.1016/j.ydbio.2016.02.020. Epub 2016 Feb 26.
3
Force and the spindle: mechanical cues in mitotic spindle orientation.
Semin Cell Dev Biol. 2014 Oct;34:133-9. doi: 10.1016/j.semcdb.2014.07.008. Epub 2014 Jul 29.
4
Par3-mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN.
Nat Cell Biol. 2014 Aug;16(8):758-69. doi: 10.1038/ncb3001. Epub 2014 Jul 13.
5
NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane.
EMBO J. 2014 Aug 18;33(16):1815-30. doi: 10.15252/embj.201488147. Epub 2014 Jul 4.
6
Cell cycle-regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation.
Mol Biol Cell. 2014 Mar;25(5):606-19. doi: 10.1091/mbc.E13-08-0474. Epub 2013 Dec 26.
7
NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions.
Mol Biol Cell. 2013 Dec;24(23):3651-62. doi: 10.1091/mbc.E13-05-0277. Epub 2013 Oct 9.
8
Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase.
Cell. 2013 Jul 18;154(2):391-402. doi: 10.1016/j.cell.2013.06.010.
9
Wnt and CDK-1 regulate cortical release of WRM-1/β-catenin to control cell division orientation in early Caenorhabditis elegans embryos.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E918-27. doi: 10.1073/pnas.1300769110. Epub 2013 Feb 19.
10
Mechanisms of spindle positioning.
J Cell Biol. 2013 Jan 21;200(2):131-40. doi: 10.1083/jcb.201210007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验