Rose Lesilee, Gönczy Pierre
Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
WormBook. 2014 Dec 30:1-43. doi: 10.1895/wormbook.1.30.2.
Polarity establishment, asymmetric division, and acquisition of cell fates are critical steps during early development. In this review, we discuss processes that set up the embryonic axes, with an emphasis on polarity establishment and asymmetric division. We begin with the first asymmetric division in the C. elegans embryo, where symmetry is broken by the local inactivation of actomyosin cortical contractility. This contributes to establishing a polarized distribution of PAR proteins and associated components on the cell cortex along the longitudinal embryonic axis, which becomes the anterior-posterior (AP) axis. Thereafter, AP polarity is maintained through reciprocal negative interactions between the anterior and posterior cortical domains. We then review the mechanisms that ensure proper positioning of the centrosomes and the mitotic spindle in the one-cell embryo by exerting pulling forces on astral microtubules. We explain how a ternary complex comprised of Gα (GOA-1/GPA-16), GPR-1/GPR-2, and LIN-5 is essential for anchoring the motor protein dynein to the cell cortex, where it is thought to exert pulling forces on depolymerizing astral microtubules. We proceed by providing an overview of cell cycle asynchrony in two-cell embryos, as well as the cell signaling and spindle positioning events that underly the subsequent asymmetric divisions, which establish the dorsal-ventral and left-right axes. We then discuss how AP polarity ensures the unequal segregation of cell fate regulators via the cytoplasmic proteins MEX-5/MEX-6 and other polarity mediators, before ending with an overview of how the fates of the early blastomeres are specified by these processes.
极性建立、不对称分裂以及细胞命运的获得是早期发育过程中的关键步骤。在本综述中,我们讨论了建立胚胎轴的过程,重点是极性建立和不对称分裂。我们从秀丽隐杆线虫胚胎中的第一次不对称分裂开始,在那里肌动球蛋白皮质收缩性的局部失活打破了对称性。这有助于在细胞皮质上沿胚胎纵轴建立PAR蛋白及相关成分的极化分布,该纵轴成为前后(AP)轴。此后,通过前后皮质结构域之间的相互负向作用维持AP极性。然后,我们回顾了通过对星体微管施加拉力来确保单细胞胚胎中中心体和有丝分裂纺锤体正确定位的机制。我们解释了由Gα(GOA-1/GPA-16)、GPR-1/GPR-2和LIN-5组成的三元复合物如何对于将动力蛋白dynein锚定到细胞皮质至关重要,据认为它在那里对解聚的星体微管施加拉力。接着,我们概述了二细胞胚胎中的细胞周期不同步,以及作为随后不对称分裂基础的细胞信号传导和纺锤体定位事件,这些分裂建立了背腹轴和左右轴。然后,我们讨论了AP极性如何通过细胞质蛋白MEX-5/MEX-6和其他极性介质确保细胞命运调节因子的不均等分离,最后概述了这些过程如何确定早期卵裂球的命运。