Suppr超能文献

使用抗疲劳异步束内多电极刺激控制动态肢体运动

Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.

作者信息

Frankel Mitchell A, Mathews V John, Clark Gregory A, Normann Richard A, Meek Sanford G

机构信息

Department of Mechanical Engineering, University of Utah Salt Lake City, UT, USA.

School of Electrical Engineering and Computer Science, Oregon State University Corvallis, OR, USA.

出版信息

Front Neurosci. 2016 Sep 13;10:414. doi: 10.3389/fnins.2016.00414. eCollection 2016.

Abstract

Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS.

摘要

对周围神经运动轴突的小独立群体进行异步束内多电极刺激(aIFMS)可诱发选择性、抗疲劳的肌肉力量。我们之前开发了一种用于aIFMS产生等长肌肉力量的实时比例闭环控制方法,目前的工作将这种闭环控制器扩展并应用于在存在相反关节扭矩的情况下动态控制关节位置这一要求更高的任务。一种带有积分抗饱和策略的比例积分速度控制器,通过对快速收缩的足底屈肌进行aIFMS刺激,在麻醉猫的后肢踝关节周围诱发运动,经过实验验证是一种可行的方法。该控制器成功地诱发了关节位置的阶跃变化,超调量为2.4%,上升时间为2.3秒,调节时间为4.5秒,稳态误差接近零。受控的阶跃响应在步长变化时保持一致,对外部干扰稳定,且随时间可靠。该控制器能够在高达8度/秒的关节速度下诱发平滑的离心运动,以及频率高达0.1赫兹的正弦轨迹,时间延迟小于1.5秒。这些实验为创建一个强大的闭环aIFMS控制器提供了重要见解,该控制器能够在瘫痪个体中诱发精确的抗疲劳运动,尽管aIFMS引入了复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46c/5020091/a1fdf08d87bb/fnins-10-00414-g0001.jpg

相似文献

1
Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.
Front Neurosci. 2016 Sep 13;10:414. doi: 10.3389/fnins.2016.00414. eCollection 2016.
2
Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):325-32. doi: 10.1109/TNSRE.2011.2123920. Epub 2011 Mar 7.
3
Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.
J Neural Eng. 2012 Apr;9(2):026019. doi: 10.1088/1741-2560/9/2/026019. Epub 2012 Mar 14.
4
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance.
Front Neurosci. 2017 Jun 20;11:347. doi: 10.3389/fnins.2017.00347. eCollection 2017.
5
Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):235-43. doi: 10.1109/TNSRE.2007.897016.
6
Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body.
IEEE Trans Neural Syst Rehabil Eng. 2015 Nov;23(6):1117-27. doi: 10.1109/TNSRE.2015.2427658. Epub 2015 Apr 29.
10
Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2737-2745. doi: 10.1109/TBME.2017.2671853.

引用本文的文献

1
Asynchronous axonal firing patterns evoked via continuous subthreshold kilohertz stimulation.
J Neural Eng. 2023 Mar 16;20(2). doi: 10.1088/1741-2552/acc20f.
2
Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke.
Front Neurol. 2021 Apr 20;12:610434. doi: 10.3389/fneur.2021.610434. eCollection 2021.
4
Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.
Sci Rep. 2017 Nov 29;7(1):16595. doi: 10.1038/s41598-017-16824-1.

本文引用的文献

1
Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.
J Neural Eng. 2012 Apr;9(2):026019. doi: 10.1088/1741-2560/9/2/026019. Epub 2012 Mar 14.
2
Feed forward and feedback control for over-ground locomotion in anaesthetized cats.
J Neural Eng. 2012 Apr;9(2):026003. doi: 10.1088/1741-2560/9/2/026003. Epub 2012 Feb 13.
3
Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4641-4. doi: 10.1109/IEMBS.2011.6091149.
4
Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
J Neural Eng. 2012 Feb;9(1):016006. doi: 10.1088/1741-2560/9/1/016006. Epub 2011 Dec 16.
5
Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):601-11. doi: 10.1109/TNSRE.2011.2166405. Epub 2011 Oct 3.
6
Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):325-32. doi: 10.1109/TNSRE.2011.2123920. Epub 2011 Mar 7.
7
Adaptive terminal sliding mode control of ankle movement using functional electrical stimulation of agonist-antagonist muscles.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5448-51. doi: 10.1109/IEMBS.2010.5626508.
8
Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2009 Dec;17(6):545-52. doi: 10.1109/TNSRE.2008.2011988. Epub 2009 Aug 18.
9
Automated stimulus-response mapping of high-electrode-count neural implants.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):504-11. doi: 10.1109/TNSRE.2009.2029494. Epub 2009 Aug 7.
10
The isometric responses of mammalian muscles.
J Physiol. 1930 Jun 27;69(4):377-85. doi: 10.1113/jphysiol.1930.sp002657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验