Suppr超能文献

无膜细胞器中的折返相变与非平衡动力学

Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles.

作者信息

Milin Anthony N, Deniz Ashok A

机构信息

Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States.

出版信息

Biochemistry. 2018 May 1;57(17):2470-2477. doi: 10.1021/acs.biochem.8b00001. Epub 2018 Apr 3.

Abstract

Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.

摘要

生物化学成分、相互作用及反应的区室化对于细胞功能至关重要。虽然通过膜对分子进行细胞内分隔已得到广泛研究,但近年来,诸如核仁等无膜细胞器(MLO)的关键细胞作用及生物物理作用机制受到了越来越多的关注。在这种背景下,近期大量工作表明液-液相分离在MLO形成中起关键作用。然而,对于MLO解离了解较少,到目前为止磷酸化是已证实的主要机制。在本观点文章中,我们关注近期工作中描述的MLO解离的另一种机制,即折返相变(RPT)。这一概念源自聚合物物理领域,通过对RNA浓度进行单调调节为MLO的形成和解离提供了一个机制基础,RNA浓度是转录等细胞过程的结果。此外,RPT模型还预测了在细胞MLO中观察到的那种动态亚结构(液泡)的形成。我们最后讨论了未来的方向,包括有待解决的问题以及可用于解答这些问题的方法,其中包括使用系综和单分子方法以及理论和计算在体外、细胞内和体内进一步探索RPT。我们预计持续的研究将进一步阐明折返相变及相关非平衡动力学在细胞生物化学和生物学空间模式形成中的重要作用。

相似文献

1
Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles.无膜细胞器中的折返相变与非平衡动力学
Biochemistry. 2018 May 1;57(17):2470-2477. doi: 10.1021/acs.biochem.8b00001. Epub 2018 Apr 3.
2
Functional Implications of Intracellular Phase Transitions.细胞内相变的功能意义
Biochemistry. 2018 May 1;57(17):2415-2423. doi: 10.1021/acs.biochem.7b01136. Epub 2018 Jan 24.
3
Membraneless nuclear organelles and the search for phases within phases.无膜核细胞器和相内相的寻找。
Wiley Interdiscip Rev RNA. 2019 Mar;10(2):e1514. doi: 10.1002/wrna.1514. Epub 2018 Oct 25.
4
A guide to regulation of the formation of biomolecular condensates.生物分子凝聚物形成的调控指南。
FEBS J. 2020 May;287(10):1924-1935. doi: 10.1111/febs.15254. Epub 2020 Mar 14.
5
Physical Chemistry of Cellular Liquid-Phase Separation.细胞液相分离的物理化学
Chemistry. 2019 Apr 17;25(22):5600-5610. doi: 10.1002/chem.201805093. Epub 2019 Feb 7.

引用本文的文献

2
Molecular determinants of condensate composition.凝聚物组成的分子决定因素。
Mol Cell. 2025 Jan 16;85(2):290-308. doi: 10.1016/j.molcel.2024.12.021.

本文引用的文献

6
Playing with the Molecules of Life.玩转生命分子。
ACS Chem Biol. 2018 Apr 20;13(4):854-870. doi: 10.1021/acschembio.7b00974. Epub 2018 Mar 2.
7
Functional Implications of Intracellular Phase Transitions.细胞内相变的功能意义
Biochemistry. 2018 May 1;57(17):2415-2423. doi: 10.1021/acs.biochem.7b01136. Epub 2018 Jan 24.
10
Tailoring the appearance: what will synthetic cells look like?定制外观:合成细胞会是什么样子?
Curr Opin Biotechnol. 2018 Jun;51:47-56. doi: 10.1016/j.copbio.2017.11.005. Epub 2017 Nov 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验