Kudo Madoka, Kidokoro Satoshi, Yoshida Takuya, Mizoi Junya, Todaka Daisuke, Fernie Alisdair R, Shinozaki Kazuo, Yamaguchi-Shinozaki Kazuko
Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany.
Plant Biotechnol J. 2017 Apr;15(4):458-471. doi: 10.1111/pbi.12644. Epub 2016 Nov 14.
Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants.
尽管已经培育出了多种耐旱的转基因植物,但其中许多植物都表现出生长迟缓的现象。为了提高耐旱性和植物生长,我们采用了基因叠加方法,使用两个转录因子基因:脱水响应元件结合蛋白1A(DREB1A)和水稻光敏色素相互作用因子样1(OsPIL1)。据报道,DREB1A的过表达可提高多种作物的耐旱胁迫能力,尽管它也会导致严重的矮化表型。OsPIL1是拟南芥光敏色素相互作用因子4(PIF4)的水稻同源物,它通过激活细胞壁相关基因的表达来促进细胞伸长。我们发现在拟南芥原生质体的光照条件下,OsPIL1蛋白比PIF4更稳定。反式激活分析表明,DREB1A和OsPIL1不会对彼此的转录活性产生负面影响。同时过表达OsPIL1和DREB1A的转基因植物表现出与DREB1A过表达植物相似的耐旱胁迫能力的提高。此外,与DREB1A过表达植物相比,双过表达植物的下胚轴伸长和花诱导增强。代谢组分析表明,双过表达植物中积累了糖类和氨基酸等相容性溶质,这与DREB1A过表达植物的观察结果相似。转录组分析显示,双过表达植物中非生物胁迫诱导的DREB1A下游基因和细胞伸长相关的OsPIL1下游基因表达增加,这表明尽管在平衡植物生长和胁迫耐受性方面需要进行权衡,但这两个转录因子在转基因植物中独立发挥作用。我们的研究为旨在克服耐旱转基因植物生长迟缓的植物基因工程提供了基础。