Waardenberg Ashley J, Homan Bernou, Mohamed Stephanie, Harvey Richard P, Bouveret Romaric
Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia Children's Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.
Open Biol. 2016 Sep;6(9). doi: 10.1098/rsob.160183.
The ability to accurately predict the DNA targets and interacting cofactors of transcriptional regulators from genome-wide data can significantly advance our understanding of gene regulatory networks. NKX2-5 is a homeodomain transcription factor that sits high in the cardiac gene regulatory network and is essential for normal heart development. We previously identified genomic targets for NKX2-5 in mouse HL-1 atrial cardiomyocytes using DNA-adenine methyltransferase identification (DamID). Here, we apply machine learning algorithms and propose a knowledge-based feature selection method for predicting NKX2-5 protein : protein interactions based on motif grammar in genome-wide DNA-binding data. We assessed model performance using leave-one-out cross-validation and a completely independent DamID experiment performed with replicates. In addition to identifying previously described NKX2-5-interacting proteins, including GATA, HAND and TBX family members, a number of novel interactors were identified, with direct protein : protein interactions between NKX2-5 and retinoid X receptor (RXR), paired-related homeobox (PRRX) and Ikaros zinc fingers (IKZF) validated using the yeast two-hybrid assay. We also found that the interaction of RXRα with NKX2-5 mutations found in congenital heart disease (Q187H, R189G and R190H) was altered. These findings highlight an intuitive approach to accessing protein-protein interaction information of transcription factors in DNA-binding experiments.
从全基因组数据中准确预测转录调节因子的DNA靶点和相互作用辅助因子的能力,能够显著增进我们对基因调控网络的理解。NKX2-5是一种同源结构域转录因子,在心脏基因调控网络中处于高位,对正常心脏发育至关重要。我们之前利用DNA腺嘌呤甲基转移酶识别(DamID)技术,在小鼠HL-1心房心肌细胞中鉴定出了NKX2-5的基因组靶点。在此,我们应用机器学习算法,并基于全基因组DNA结合数据中的基序语法,提出了一种基于知识的特征选择方法,用于预测NKX2-5蛋白质与蛋白质的相互作用。我们使用留一法交叉验证和一个完全独立的重复进行的DamID实验来评估模型性能。除了鉴定出之前描述的与NKX2-5相互作用的蛋白质,包括GATA、HAND和TBX家族成员外,还鉴定出了许多新的相互作用蛋白,并使用酵母双杂交试验验证了NKX2-5与视黄酸X受体(RXR)、配对相关同源框(PRRX)和Ikaros锌指(IKZF)之间的直接蛋白质与蛋白质相互作用。我们还发现,先天性心脏病中发现的RXRα与NKX2-5突变(Q187H、R189G和R190H)之间的相互作用发生了改变。这些发现突出了一种在DNA结合实验中获取转录因子蛋白质-蛋白质相互作用信息的直观方法。