Suppr超能文献

使用基于参考的校正来采集和处理超快生物分子二维核磁共振实验。

Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction.

作者信息

Seginer Amir, Olsen Gregory L, Frydman Lucio

机构信息

Department of Chemical Physics, Weizmann Institute of Science, 76100, Rehovot, Israel.

出版信息

J Biomol NMR. 2016 Oct;66(2):141-157. doi: 10.1007/s10858-016-0063-8. Epub 2016 Sep 28.

Abstract

Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the [Formula: see text]-[Formula: see text] plane, that will deliver the spectrum being sought after a 1D Fourier transformation versus [Formula: see text]. This need to simultaneously digitize two domains, tends to impose bandwidth limitations along all spectral axes. Along the [Formula: see text]/[Formula: see text] dimension this problem is exacerbated by the fact that odd and even time points are not equispaced, and by additional artifacts such as time shifts between time points sampled while under the action of positive and negative decoding gradients. As a result, odd and even [Formula: see text] points are typically Fourier transformed separately, halving the potential spectral width along this dimension. While this halving of the [Formula: see text] span can be overcome by an interlaced Fourier transform, this post-processing is seldom used because of its sensitivity to hardware inaccuracies requiring even finer corrections of the even/odd [Formula: see text] data points. These corrections have so far been done manually, but are challenging to implement when dealing with low signal-to-noise ratio signals like those associated with biomolecular NMR experiments. This study introduces an algorithm for an automatic correction of all even/odd ultrafast NMR inconsistencies, based on the acquisition of a reference scan on the solvent. This algorithm was verified experimentally using an [Formula: see text]-[Formula: see text] UF-HSQC variant on ubiquitin at 600 MHz. Features of this method as well as of the interlaced Fourier transformation in general, are discussed.

摘要

由于其特殊的时空编码/解码方案,超快(UF)核磁共振序列在单次激发后即可生成任意二维谱。无论其本质如何,这些序列的共同之处在于它们在(t_1)-(t_2)平面上追踪一条路径,经过对(t_1)的一维傅里叶变换后将得到所需的谱。这种同时对两个域进行数字化的需求,往往会在所有谱轴上施加带宽限制。在(t_1)/(t_2)维度上,这个问题因奇数和偶数时间点并非等间距这一事实而加剧,并且还存在诸如在正负解码梯度作用下采样的时间点之间的时间偏移等额外伪影。结果,奇数和偶数(t_1)点通常分别进行傅里叶变换,从而使该维度上的潜在谱宽减半。虽然通过交错傅里叶变换可以克服(t_1)跨度的这种减半,但由于其对硬件不准确性敏感,需要对偶数/奇数(t_1)数据点进行更精细的校正,所以这种后处理很少使用。到目前为止,这些校正是手动完成的,但在处理像生物分子核磁共振实验中那样的低信噪比信号时,实施起来具有挑战性。本研究引入了一种基于对溶剂进行参考扫描采集的算法,用于自动校正所有偶数/奇数超快核磁共振的不一致性。使用600 MHz下泛素的(^{1}H)-(^{15}N) UF-HSQC变体对该算法进行了实验验证。讨论了该方法以及一般交错傅里叶变换的特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验