Suppr超能文献

少即是多:营养限制诱导营养感应途径与NAD稳态之间的相互作用,并有助于延长寿命。

Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD homeostasis and contributes to longevity.

作者信息

Tsang Felicia, Lin Su-Ju

机构信息

Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA.

出版信息

Front Biol (Beijing). 2015 Aug;10(4):333-357. doi: 10.1007/s11515-015-1367-x. Epub 2015 Jul 30.

Abstract

Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, , and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD precursor) homeostasis. Maintaining adequate NAD pools has been shown to play key roles in life span extension, but factors regulating NAD metabolism and homeostasis are not completely understood. Recently, NAD metabolism was also linked to the phosphate (Pi)-sensing pathway in yeast. Canonical activation requires Pi-starvation. Interestingly, NAD depletion without Pi-starvation was sufficient to induce activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with signaling components to regulate NR/NAD homeostasis. These studies suggest that NAD metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of , PKA, TOR and Sch9 pathways was reported to potentially affect NAD metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD homeostasis, and cross-talk among nutrient sensing pathways and NAD homeostasis.

摘要

营养感应途径及其调控使细胞能够根据营养变化来控制自身的代谢和生长。调节营养感应的因素也可以调节寿命。葡萄糖感应蛋白激酶A(PKA)、氮感应雷帕霉素靶蛋白(TOR)和S6激酶同源物Sch9等营养感应途径活性的降低与酵母及高等真核生物寿命的延长有关。最近,氨基酸感应SPS途径活性的降低也被证明可延长酵母寿命。通过降低SPS活性来延长寿命需要增强烟酰胺腺嘌呤二核苷酸(NAD,氧化形式)和烟酰胺核糖(NR,一种NAD前体)的体内平衡。维持充足的NAD池已被证明在寿命延长中起关键作用,但调节NAD代谢和体内平衡的因素尚未完全了解。最近,NAD代谢还与酵母中的磷酸盐(Pi)感应途径相关。经典的[此处原文缺失具体内容]激活需要Pi饥饿。有趣的是,在没有Pi饥饿的情况下,NAD耗竭足以诱导[此处原文缺失具体内容]激活,增加NR的产生和动员。此外,SPS信号似乎与[此处原文缺失具体内容]信号成分平行发挥作用,以调节NR/NAD体内平衡。这些研究表明,NAD代谢可能受多种营养感应途径控制和/或与之协调。事实上,据报道[此处原文缺失具体内容]、PKA、TOR和Sch9途径的交叉调节可能影响NAD代谢;尽管详细机制尚不清楚。本综述讨论了与酵母寿命相关的营养感应途径、寿命延长的可能机制、NAD体内平衡的调节以及营养感应途径与NAD体内平衡之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a135/5036586/c018fb4da880/nihms-818133-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验