Suppr超能文献

用于牙种植体规划的口腔内X光片纹理分析

Intraoral radiographs texture analysis for dental implant planning.

作者信息

Mundim Mayara B V, Dias Danilo R, Costa Ronaldo M, Leles Cláudio R, Azevedo-Marques Paulo M, Ribeiro-Rotta Rejane F

机构信息

School of Dentistry, Universidade Federal de Goias, Avenida Universitária esquina com 1a Avenida s/n, Setor Universitário, 74605-220 Goiânia, Goiás, Brazil.

Institute of Informatics, Universidade Federal de Goias, Alameda Palmeiras, Quadra D, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.

出版信息

Comput Methods Programs Biomed. 2016 Nov;136:89-96. doi: 10.1016/j.cmpb.2016.08.012. Epub 2016 Aug 24.

Abstract

BACKGROUND AND OBJECTIVES

Computer vision extracts features or attributes from images improving diagnosis accuracy and aiding in clinical decisions. This study aims to investigate the feasibility of using texture analysis of periapical radiograph images as a tool for dental implant treatment planning.

METHODS

Periapical radiograph images of 127 jawbone sites were obtained before and after implant placement. From the superimposition of the pre- and post-implant images, four regions of interest (ROI) were delineated on the pre-implant images for each implant site: mesial, distal and apical peri-implant areas and a central area. Each ROI was analysed using Matlab® software and seven image attributes were extracted: mean grey level (MGL), standard deviation of grey levels (SDGL), coefficient of variation (CV), entropy (En), contrast, correlation (Cor) and angular second moment (ASM). Images were grouped by bone types-Lekholm and Zarb classification (1,2,3,4). Peak insertion torque (PIT) and resonance frequency analysis (RFA) were recorded during implant placement. Differences among groups were tested for each image attribute. Agreement between measurements of the peri-implant ROIs and overall ROI (peri-implant + central area) was tested, as well as the association between primary stability measures (PIT and RFA) and texture attributes.

RESULTS

Differences among bone type groups were found for MGL (p = 0.035), SDGL (p = 0.024), CV (p < 0.001) and En (p < 0.001). The apical ROI showed a significant difference from the other regions for all attributes, except Cor. Concordance correlation coefficients were all almost perfect (ρ > 0.93), except for ASM (ρ = 0.62). Texture attributes were significantly associated with the implant stability measures.

CONCLUSION

Texture analysis of periapical radiographs may be a reliable non-invasive quantitative method for the assessment of jawbone and prediction of implant stability, with potential clinical applications.

摘要

背景与目的

计算机视觉可从图像中提取特征或属性,提高诊断准确性并辅助临床决策。本研究旨在探讨将根尖片图像纹理分析作为牙种植治疗计划工具的可行性。

方法

在种植体植入前后获取127个颌骨部位的根尖片图像。通过种植前和种植后图像的叠加,在每个种植部位的种植前图像上划定四个感兴趣区域(ROI):种植体近中、远中及根尖周围区域和一个中心区域。使用Matlab®软件对每个ROI进行分析,提取七个图像属性:平均灰度值(MGL)、灰度标准差(SDGL)、变异系数(CV)、熵(En)、对比度、相关性(Cor)和角二阶矩(ASM)。图像按骨类型 - Lekholm和Zarb分类(1、2、3、4)分组。在种植体植入过程中记录峰值插入扭矩(PIT)和共振频率分析(RFA)。对每组的每个图像属性进行差异检验。测试种植体周围ROI与整体ROI(种植体周围 + 中心区域)测量值之间的一致性,以及初始稳定性测量值(PIT和RFA)与纹理属性之间的关联。

结果

在MGL(p = 0.035)、SDGL(p = 0.024)、CV(p < 0.001)和En(p < 0.001)方面发现骨类型组之间存在差异。除Cor外,根尖ROI在所有属性上与其他区域均存在显著差异。除ASM(ρ = 0.62)外,一致性相关系数均几乎完美(ρ > 0.93)。纹理属性与种植体稳定性测量值显著相关。

结论

根尖片纹理分析可能是一种可靠的非侵入性定量方法,用于评估颌骨和预测种植体稳定性,具有潜在的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验