Burla Maurizio, Wang Xu, Li Ming, Chrostowski Lukas, Azaña José
Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications (INRS-EMT), Varennes, Quebec, Canada J3X 1S2.
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
Nat Commun. 2016 Sep 30;7:13004. doi: 10.1038/ncomms13004.
Photonic-based instantaneous frequency measurement (IFM) of unknown microwave signals offers improved flexibility and frequency range as compared with electronic solutions. However, no photonic platform has ever demonstrated the key capability to perform dynamic IFM, as required in real-world applications. In addition, all demonstrations to date employ bulky components or need high optical power for operation. Here we demonstrate an integrated photonic IFM system that can identify frequency-varying signals in a dynamic manner, without any need for fast measurement instrumentation. The system is based on a fully linear, ultracompact system based on a waveguide Bragg grating on silicon, only 65-μm long and operating up to ∼30 GHz with carrier power below 10 mW, significantly outperforming present technologies. These results open a solid path towards identification of dynamically changing signals over tens of GHz bandwidths using a practical, low-cost on-chip implementation for applications from broadband communications to biomedical, astronomy and more.
与电子解决方案相比,基于光子的未知微波信号瞬时频率测量(IFM)具有更高的灵活性和频率范围。然而,没有任何光子平台能够展示出实际应用所需的执行动态IFM的关键能力。此外,迄今为止的所有演示都使用了笨重的组件,或者需要高光学功率来运行。在此,我们展示了一种集成光子IFM系统,该系统能够以动态方式识别频率变化的信号,而无需任何快速测量仪器。该系统基于一个完全线性、超紧凑的系统,该系统基于硅上的波导布拉格光栅,仅65μm长,工作频率高达约30GHz,载波功率低于10mW,显著优于现有技术。这些结果为使用实用、低成本的片上实现方式在数十GHz带宽上识别动态变化信号开辟了一条坚实的道路,可应用于从宽带通信到生物医学、天文学等更多领域。