Suppr超能文献

直接用光通信的单片机。

Single-chip microprocessor that communicates directly using light.

机构信息

University of California, Berkeley, Berkeley, California 94720, USA.

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2015 Dec 24;528(7583):534-8. doi: 10.1038/nature16454.

Abstract

Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

摘要

数据在短电线上的传输受到带宽和功率密度的限制,这为现代计算机系统中的半导体微芯片(从移动电话到大容量数据中心)带来了性能瓶颈。可以通过使用基于芯片级电子光子系统的光通信来克服这些限制,该系统由基于硅的纳米光子器件实现。然而,由于微电子制造在电子和光子学之间存在冲突,因此将电子学和光子学结合在同一芯片上一直具有挑战性。因此,当前的电子光子芯片仅限于利基制造工艺,并且除了简单的电路外,仅包括少数几个光器件。在这里,我们报告了一种在单个芯片上集成了超过 7000 万个晶体管和 850 个光子组件的电子光子系统,这些组件协同工作,提供逻辑,内存和互连功能。该系统是使用片上光子器件与其他芯片直接使用光进行通信的微处理器的实现。为了在微处理器芯片的规模上集成电子学和光子学,我们采用了一种“零改变”的光子集成方法。我们没有开发一种定制工艺来实现光子学的制造,这种工艺会使大规模和高产量与最先进的晶体管集成复杂化或消除这种可能性,而是使用用于现代微处理器的标准微电子制造工艺来设计光学器件。该演示可能代表了具有变革计算系统架构潜力的片上电子光子系统时代的开始,使计算机从网络基础设施到数据中心和超级计算机都变得更加强大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验