Suppr超能文献

额顶叶与默认网络之间动态功能连接的状态依赖性变异性与认知灵活性相关。

State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility.

作者信息

Douw Linda, Wakeman Daniel G, Tanaka Naoaki, Liu Hesheng, Stufflebeam Steven M

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Anatomy and Neurosciences, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.

出版信息

Neuroscience. 2016 Dec 17;339:12-21. doi: 10.1016/j.neuroscience.2016.09.034. Epub 2016 Sep 28.

Abstract

The brain is a dynamic, flexible network that continuously reconfigures. However, the neural underpinnings of how state-dependent variability of dynamic functional connectivity (vdFC) relates to cognitive flexibility are unclear. We therefore investigated flexible functional connectivity during resting-state and task-state functional magnetic resonance imaging (rs-fMRI and t-fMRI, resp.) and performed separate, out-of-scanner neuropsychological testing. We hypothesize that state-dependent vdFC between the frontoparietal network (FPN) and the default mode network (DMN) relates to cognitive flexibility. Seventeen healthy subjects performed the Stroop color word test and underwent t-fMRI (Stroop computerized version) and rs-fMRI. Time series were extracted from a cortical atlas, and a sliding window approach was used to obtain a number of correlation matrices per subject. vdFC was defined as the standard deviation of connectivity strengths over these windows. Higher task-state FPN-DMN vdFC was associated with greater out-of-scanner cognitive flexibility, while the opposite relationship was present for resting-state FPN-DMN vdFC. Moreover, greater contrast between task-state and resting-state vdFC related to better cognitive performance. In conclusion, our results suggest that not only the dynamics of connectivity between these networks is seminal for optimal functioning, but also that the contrast between dynamics across states reflects cognitive performance.

摘要

大脑是一个不断重新配置的动态、灵活的网络。然而,动态功能连接性(vdFC)的状态依赖性变异性与认知灵活性之间的神经基础尚不清楚。因此,我们在静息态和任务态功能磁共振成像(分别为rs-fMRI和t-fMRI)期间研究了灵活的功能连接性,并进行了单独的、扫描仪外的神经心理学测试。我们假设额顶叶网络(FPN)和默认模式网络(DMN)之间的状态依赖性vdFC与认知灵活性有关。17名健康受试者进行了Stroop颜色词测试,并接受了t-fMRI(Stroop计算机化版本)和rs-fMRI检查。从皮质图谱中提取时间序列,并使用滑动窗口方法为每个受试者获得多个相关矩阵。vdFC被定义为这些窗口上连接强度的标准差。更高的任务态FPN-DMN vdFC与更高的扫描仪外认知灵活性相关,而静息态FPN-DMN vdFC则呈现相反的关系。此外,任务态和静息态vdFC之间的更大差异与更好的认知表现相关。总之,我们的结果表明,不仅这些网络之间连接的动态性对最佳功能至关重要,而且跨状态动态之间的差异也反映了认知表现。

相似文献

1
State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility.
Neuroscience. 2016 Dec 17;339:12-21. doi: 10.1016/j.neuroscience.2016.09.034. Epub 2016 Sep 28.
2
Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study.
Neuropsychologia. 2023 Dec 15;191:108708. doi: 10.1016/j.neuropsychologia.2023.108708. Epub 2023 Oct 28.
3
Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.
5
Identification of Resting State Networks Involved in Executive Function.
Brain Connect. 2016 Jun;6(5):365-74. doi: 10.1089/brain.2015.0399. Epub 2016 Mar 31.
9
10
Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging.
Brain Res Bull. 2016 Mar;121:26-41. doi: 10.1016/j.brainresbull.2015.12.001. Epub 2015 Dec 11.

引用本文的文献

1
The effect of depression on the peak alpha frequency as a biomarker of pain sensitivity.
Neurobiol Pain. 2025 Aug 6;18:100193. doi: 10.1016/j.ynpai.2025.100193. eCollection 2025 Jul-Dec.
2
Homological landscape of human brain functional sub-circuits.
Mathematics (Basel). 2024 Feb;12(3). doi: 10.3390/math12030455. Epub 2024 Jan 31.
5
Common and unique network basis for externally and internally driven flexibility in cognition: From a developmental perspective.
Dev Cogn Neurosci. 2025 Apr;72:101528. doi: 10.1016/j.dcn.2025.101528. Epub 2025 Feb 6.
7
Modulatory Neurotransmitter Genotypes Shape Dynamic Functional Connectome Reconfigurations.
J Neurosci. 2025 Mar 5;45(10):e1939242025. doi: 10.1523/JNEUROSCI.1939-24.2025.
8
Decoding ruminative reflection in healthy individuals: The role of triple network connectivity.
Int J Clin Health Psychol. 2024 Oct-Dec;24(4):100508. doi: 10.1016/j.ijchp.2024.100508. Epub 2024 Oct 10.
9
Rapid dynamics of electrophysiological connectome states are heritable.
Netw Neurosci. 2024 Dec 10;8(4):1065-1088. doi: 10.1162/netn_a_00391. eCollection 2024.
10

本文引用的文献

1
Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
Neuroimage. 2016 Feb 15;127:287-297. doi: 10.1016/j.neuroimage.2015.12.001. Epub 2015 Dec 11.
2
Cognitive Flexibility: A Default Network and Basal Ganglia Connectivity Perspective.
Brain Connect. 2016 Apr;6(3):201-7. doi: 10.1089/brain.2015.0388. Epub 2016 Feb 16.
3
Default Mode Dynamics for Global Functional Integration.
J Neurosci. 2015 Nov 18;35(46):15254-62. doi: 10.1523/JNEUROSCI.2135-15.2015.
4
Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience.
Trends Neurosci. 2015 Sep;38(9):571-8. doi: 10.1016/j.tins.2015.07.003.
5
Dynamic reconfiguration of frontal brain networks during executive cognition in humans.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11678-83. doi: 10.1073/pnas.1422487112. Epub 2015 Aug 31.
6
On the existence of a generalized non-specific task-dependent network.
Front Hum Neurosci. 2015 Aug 6;9:430. doi: 10.3389/fnhum.2015.00430. eCollection 2015.
7
Default mode network connectivity during task execution.
Neuroimage. 2015 Nov 15;122:96-104. doi: 10.1016/j.neuroimage.2015.07.053. Epub 2015 Jul 26.
8
Flexible brain network reconfiguration supporting inhibitory control.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):10020-5. doi: 10.1073/pnas.1500048112. Epub 2015 Jul 27.
9
Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference.
Neuroimage. 2015 Oct 1;119:197-209. doi: 10.1016/j.neuroimage.2015.06.058. Epub 2015 Jun 26.
10
Ongoing dynamics in large-scale functional connectivity predict perception.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8463-8. doi: 10.1073/pnas.1420687112. Epub 2015 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验