Suppr超能文献

一种在CT重建中使用先验图像和分裂Bregman方法的改进全变差最小化方法

An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction.

作者信息

Deng Luzhen, Feng Peng, Chen Mianyi, He Peng, Wei Biao

机构信息

Key Laboratory of Optoelectronics Technology & System, Chongqing University, Ministry of Education, Chongqing 400044, China.

出版信息

Biomed Res Int. 2016;2016:3094698. doi: 10.1155/2016/3094698. Epub 2016 Aug 25.

Abstract

Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered via Locally Linear Embedding (LLE). To validate the method, two studies were performed. Numerical simulation using an abdomen phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse projection data. A real dataset was used to further validate the method.

摘要

压缩感知(CS)理论在从稀疏视图投影数据重建计算机断层扫描(CT)图像方面具有巨大潜力,基于总变差(TV)的CT重建方法非常流行。然而,它没有将先验图像直接纳入重建过程。为了提高重建图像的质量,本文提出了一种在CT重建中使用先验图像和分裂Bregman方法的改进TV最小化方法,该方法利用先验图像获取有价值的先前信息并促进后续成像过程。通过局部线性嵌入(LLE)对异步获取的图像进行配准。为了验证该方法,进行了两项研究。使用腹部体模的数值模拟已用于证明所提出的方法能够在稀疏投影数据下准确重建图像对象。使用真实数据集进一步验证了该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1660/5015431/39bb33b51b1b/BMRI2016-3094698.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验